
Databases Design. Introduction to SQL

LECTURE 3

Normalization

Review of last lecture

• Previously, we looked at designing
databases using ER models

• There was one question that this process
leads to:
what constitutes a “good” database
design?

Today’s lecture
• We’ll discuss the criteria used to evaluate a

database design.

• We'll formalize our definition of a “good” database
design using the concept of functional
dependencies.

• We'll look at how to fix a “bad” database design
using the process of normalization.

“Good” database design

What criteria would you say
constitutes a good database

design?

“Good” database design

Good database design exhibits the
following characteristics:

• Tables group only related data
• Tables store no redundant data
• NULL values are minimized

“Bad” database design
Consider the following table storing teachers
and departments information for a university:

Update anomalies
• Clearly, this relation is a bad design

because it stores redundant data, which is
one of our criteria for evaluating database
design.

• Data redundancy, such as in this relation,
leads to three types of update anomalies:

- Modification anomaly
- Insertion anomaly
- Deletion anomaly

Insertion anomaly

Insertion anomaly occurs when
we are prevented from inserting
some data into a relation until other
data can be supplied.

Insertion anomaly
There are two main types of insertion anomaly:
• To insert the details of a new teacher into the relation,

we must include the details of the department at which
the teacher are to be located.

• To insert details of a new department that currently has
no teachers into the relation, it is necessary to enter
nulls into the attributes for teachers, such as
Teacher_id. However, as Teacher_id is the Primary key
for the relation, attempting to enter nulls for Teacher_id
violates entity integrity, and is not allowed.

Deletion anomaly
• Deletion anomaly occurs when a deletion leads

to an unintended loss of data.

• If we delete a tuple from the relation that
represents the last teacher located at a
department, the details about that department are
also lost from the database.

• For example, if we delete the tuple
Teacher_id=003, the details relating to IS
department are lost from the database.

Modification anomalies

• If a relation suffers a modification
anomaly, it is possible that not all data
that needs to be changed will always be
changed.

• A modification anomaly typically leads
to inconsistent data because of
missed updates.

Modification anomalies
• If we want to change the value of one of the

attributes of a particular department in the
relation, for example the room for CET
department, we must update the tuples of all
teachers located at that department.

• If this modification is not carried out on all the
appropriate tuples, the database will become
inconsistent.

Functional dependencies

• A "good" database table design grouped
related data.

• Previous example was a "bad" design
because two sets of related data were
stored in one table: teachers and
departments information.

Functional dependencies
• We can formalize the concept of a table

grouping only related data using functional
dependencies.

• Functional dependencies describe
relationships between attributes.

• Stated another way, functional dependencies
tell which attributes are uniquely determined
by the primary key.

Functional dependencies
• For example, Students relation. Each student has

a student_id (PK), a last name, a birthdate and a
gpa.

• Since the student_id is the PK, we can use it to
uniquely identify each student – we can use it to
find a unique last name, birthdate, gpa for a
particular student.

• Thus, last name, birthdate and gpa are dependent
on the PK.

Functional dependencies
• Functional dependencies are not limited to

primary key values.
• Generally, a functional dependency may be

used to describe the relationship between
any two attributes (columns) in a relation.

• We denote functional dependencies as
X -> Y

when a value of X uniquely determines a
value of Y.

Full dependencies
• A full dependency, X -> Y, exists in a relation if there is

no attribute A that can be removed from X and the
dependency still holds.

Consider a relation Students (student_id, last_name,
birthdate, gpa). The following FDs exist in this relation:

{student_id} -> {last_name, birthdate, gpa}

This is a full dependency because no attribute may be
removed from the left hand side and the dependency still
holds.

Partial dependencies
• The inverse of a full dependency is a partial

dependency.

• A dependency X -> Y is a partial
dependency if there exists an attribute A
that is part of X that can be removed from X
and the dependency still holds

Composite primary key

• Composite Primary key – a primary key
that consists of two or more attributes.

• A primary key is defined as a key or
database column which uniquely identifies
each row in a database table.
A composite key is a set of more than
one column that, together, uniquely
identifies each record.

Partial dependencies

• Let‘s discuss Teachers&Courses table.

• Suppose, PK is {teacher_id, course_id}

Partial dependencies
• Also suppose this relation has the following

dependencies:
FD1: {teacher_id, course_id} -> {last_name,
course_name, credits}
FD2: {teacher_id} -> {last_name}
FD3: {course_id} -> {course_name, credits}

• FD1 is a partial dependency
• FD2 and FD3 are full dependencies.

Transitive dependencies

• Suppose X, Y and Z are columns in R.

• Also suppose that X -> Y and Y -> Z
are dependencies in R.

• This dependency is transitive.

Transitive dependency example
• Suppose we had the following table

storing information about students and
their groups.

• PK is student_id.

Transitive dependency example
• The relation has the following functional

dependencies:
{student_id} -> {last_name, group_id,
group_name}
{group_id} -> {group_name}

• This relation contains a transitive dependency
because

{student_id} -> {group_id} -> {group_name}

Decomposition

• Decomposition is the process of breaking down
in parts or elements.

• It breaks the table into multiple tables in a
database.

• It should always be lossless, because it confirms
that the information in the original relation can be
accurately reconstructed based on the
decomposed relations.

Books
• Connolly, Thomas M. Database Systems: A Practical

Approach to Design, Implementation, and Management /
Thomas M. Connolly, Carolyn E. Begg.- United States of
America: Pearson Education

• Garcia-Molina, H. Database system: The Complete
Book / Hector Garcia-Molina.- United States of America:
Pearson Prentice Hall

• Sharma, N. Database Fundamentals: A book for the
community by the community / Neeraj Sharma, Liviu
Perniu.- Canada

Questions
The column of a table is referred to as the

a) Tuple
b) Attribute
c) Entity
d) Degree

Questions
The another name for a row is

a) Tuple
b) Attribute
c) Entity
d) Degree

Questions
A primary key for an entity is

a) A tuple
b) Any attribute
c) A unique attribute
d) A relationship

Questions
In E-R Diagram relationship type is
represented by

a) Ellipse
b) Dashed ellipse
c) Rectangle
d) Diamond (rhombus)

Questions
Key to represent relationship between
tables is called

a) Primary key
b) Secondary Key
c) Foreign Key
d) None of these

Questions
An entity relationship diagram is a tool to
represent

a) Data model
b) Process model
c) Event model
d) Customer model

Question

The FD X -> Y is a full dependency in a relation R, if
there is attribute A that can be X and the
dependency still holds.

a)At least one, added to
b)No, added to
c)No, removed from
d)At least one, removed from

Question

The FD X -> Y is a partial dependency in a relation R, if
there is attribute A that can be X and the
dependency still holds.

a)At least one, added to
b)No, added to
c)No, removed from
d)At least one, removed from

