Databases Design. Introduction to SQL

LECTURE 3

Normalization

Review of last lecture

* Previously, we looked at designing
databases using ER models

* There was one question that this process
leads to:

what constitutes a “good” database
design?

Today’s lecture

 We'll discuss the criteria used to evaluate a
database design.

« We'll formalize our definition of a “good” database
design using the concept of functional
dependencies.

« We'll look at how to fix a “bad” database design
using the process of normalization.

“Good” database design

What criteria would you say
constitutes a good database
design?

"Good” database design

Good database design exhibits the
following characteristics:

« Tables group only related data
» Tables store no redundant data

« NULL values are minimized

"‘Bad” database design

Consider the following table storing teachers
and departments information for a university:

Teacher_id | Last name | Dep_id | Dep_name | Room
001 Teacherl 001 CET 409
002 Teacher2 001 CET 409
003 Teacher3 002 IS 803

Update anomalies

» Clearly, this relation is a bad design
because it stores redundant data, which is
one of our criteria for evaluating database
design.

» Data redundancy, such as in this relation,
leads to three types of update anomalies:

- Modification anomaly
- Insertion anomaly
- Deletion anomaly

Insertion anomaly

Insertion anomaly occurs when
we are prevented from inserting
some data into a relation until other
data can be supplied.

Insertion anomaly

There are two main types of insertion anomaly:

 To insert the details of a new teacher into the relation,
we must include the details of the department at which
the teacher are to be located.

* To insert details of a new department that currently has
no teachers into the relation, it is necessary to enter
nulls into the attributes for teachers, such as
Teacher_id. However, as Teacher _id is the Primary key
for the relation, attempting to enter nulls for Teacher id
violates entity integrity, and is not allowed.

Deletion anomaly

* Deletion anomaly occurs when a deletion leads
to an unintended loss of data.

* |f we delete a tuple from the relation that
represents the last teacherlocated at a
department, the details about that department are
also lost from the database.

« For example, if we delete the tuple
Teacher _id=003, the details relating to IS
department are lost from the database.

Modification anomalies

 |f a relation suffers a modification
anomaly, it is possible that not all data

that needs to be changed will always be
changed.

* A modification anomaly typically leads
to inconsistent data because of
missed updates.

Modification anomalies

* |f we want to change the value of one of the
attributes of a particular department in the
relation, for example the room for CET
department, we must update the tuples of all
teachers located at that department.

* |f this modification is not carried out on all the

appropriate tuples, the database will become
inconsistent.

Functional dependencies

* A"good" database table design grouped
related data.

* Previous example was a "bad" design
because two sets of related data were
stored in one table: teachers and
departments information.

Functional dependencies

* We can formalize the concept of a table

grouping only related data using functional
dependencies.

* Functional dependencies describe
relationships between attributes.

« Stated another way, functional dependencies
tell which attributes are uniquely determined
by the primary key.

Functional dependencies

* For example, Studentsrelation. Each student has
a student_id (PK), a last name, a birthdate and a

gpa.

« Since the student_idis the PK, we can use it to
uniquely identify each student— we can use it to
find a unique last name, birthdate, gpa for a
particular student.

* Thus, last name, birthdate and gpa are dependent
on the PK.

Functional dependencies

* Functional dependencies are not limited to
primary key values.

* Generally, a functional dependency may be
used to describe the relationship between
any two attributes (columns) in a relation.

* We denote functional dependencies as
X->Y

when a value of X uniquely determines a
value of Y.

Full dependencies

« A full dependency, X ->Y, exists in a relation if there is
no attribute A that can be removed from X and the
dependency still holds.

Consider a relation Students (student id, last name,
birthdate, gpa). The following FDs exist in this relation:

{student_id} -> {last name, birthdate, gpa}

This is a full dependency because no attribute may be
removed from the left hand side and the dependency still
holds.

Partial dependencies

* The inverse of a full dependency is a partial
dependency.

 Adependency X ->Y is a partial
dependency if there exists an attribute A
that is part of X that can be removed from X
and the dependency still holds

Composite primary key

 Composite Primary key — a primary key
that consists of two or more attributes.

« A primary key is defined as a key or
database column which uniquely identifies
each row in a database table.

A composite key is a set of more than
one column that, together, uniquely
identifies each record.

Partial dependencies

 Let's discuss Teachers&Courses table.

Teacher_id | Last_ name | Course_id | Course_name | Credits
001 Teacherl 001 SDP1 3
001 Teacherl 002 SDP2 3
002 Teacher2 001 SDP1 3

* Suppose, PK is {teacher _id, course_id}

Partial dependencies

» Also suppose this relation has the following
dependencies:

FD1: {teacher _id, course id}-> {last_name,
course_name, credits}

FD2: {teacher _id} -> {last name}
FD3: {course_id} -> {course name, credits}

 FD1 is a partial dependency
 FD2 and FD3 are full dependencies.

Transitive dependencies

* Suppose X, Y and Z are columns in R.

* Also suppose that X->Y and Y -> /2
are dependencies in R.

* This dependency is transitive.

Transitive dependency example

« Suppose we had the following table
storing information about students and
their groups.

 PK is student id.

Student_id | Last name | Group id | Group _name
001 Studentl 001 Groupl
002 Student2 001 Groupl
003 Student3 002 Group2

Transitive dependency example

* The relation has the following functional
dependencies:

{student _id} -> {last name, group _id,
group_name}

{group_id} -> {group_name}

* This relation contains a transitive dependency
because

{student_id} -> {group id} -> {group name}

Decomposition

« Decomposition is the process of breaking down
In parts or elements.

* |t breaks the table into multiple tables in a
database.

|t should always be lossless, because it confirms
that the information in the original relation can be
accurately reconstructed based on the
decomposed relations.

Books

« Connolly, Thomas M. Database Systems: A Practical
Approach to Design, Implementation, and Management /
Thomas M. Connolly, Carolyn E. Begg.- United States of
America: Pearson Education

« Garcia-Molina, H. Database system: The Complete
Book / Hector Garcia-Molina.- United States of America:
Pearson Prentice Hall

« Sharma, N. Database Fundamentals: A book for the
community by the community / Neeraj Sharma, Liviu
Perniu.- Canada

Questions

The column of a table is referred to as the

a
b

C
d

Tuple

)
) Attrlbute
)
)

Questions

The another name for a row is

a
b

C
d

Tuple

)
) Attrlbute
)
)

Questions

A primary key for an entity is

a) Atuple
b) Any attribute

c) Aunique attribute
d) Arelationship

Q)

O T
SN N N N

O

Questions

In E-R Diagram relationship type is
represented by

Ellipse

Dashed ellipse
Rectangle

Diamond (rhombus)

O T Q©

O

Questions

Key to representrelationship between
tables is called

Primary key
Secondary Key
Foreign Key
None of these

Questions

An entity relationship diagram is a tool to
represent

Data model
Process model
Event model
Customer model

Question

The FD X -> Y is a full dependency in a relation R, if
there is attribute A that can be X and the
dependency still holds.

a)At least one, added to
b)No, added to

c)No, removed from

d)At least one, removed from

Question

The FD X -> Y is a partial dependency in a relation R, if
there is attribute A that can be X and the
dependency still holds.

a)At least one, added to
b)No, added to

c)No, removed from

d)At least one, removed from

