
Databases Design. Introduction to SQL

LECTURE 4

Normalization.
Normal Forms

Last lecture

Update anomalies
• Modification
• Insertion
• Deletion

Functional dependencies
• Full
• Partial
• Transitive

Today’s lecture
• We'll speak about normalization and normal

forms.

• You'll know what a normal form corresponds
to a “good” design

• We'll discuss how we can improve a
database design

Database Design
Stages

1. Subject Area Analysis
2. Conceptual Design
3. Logical Design
4. Physical Design

Normalization
• Normalization is used to test the correctness

of a logical data model. The logical data model
is a source of information for the next phase -
Physical database design.

• Normalization – is a process of decomposing
complex relations into simple relations in order
to remove unwanted functional dependencies
and data redundancy within complex relations.

Normal Forms

• The Normal Forms (NF) of relational
database theory provide criteria for
determining a table's degree of immunity
against logical inconsistencies and anomalies.

• The normal forms are applicable to individual
tables; to say that an entire database is in
normal form n is to say that all of its tables are
in normal form n.

History
Edgar F. Codd, the inventor of
the relational model, introduced
the concept of normalization and
what we now know as the First
Normal Form (1NF) in 1970.

Codd went on to define the
Second Normal Form (2NF) and
Third Normal Form (3NF) in
1971, and Codd and Raymond
F. Boyce defined the Boyce-
Codd Normal Form (BCNF) in
1974.

Normal Forms
• Relational tables are classified into various normal

forms based on the existence of various types of
functional dependencies.

• Types of functional dependencies leads to over five
normal forms.

“Good” design
• Normalization is executed as a series of steps.

Each step corresponds to a specific normal
form that has known properties.

• As normalization proceeds, the relations
become progressively more restricted
(stronger) in format and also less vulnerable to
update anomalies.

• 3NF is the standard normal form that a relation
may be in to be considered a “good” design.

• 3NF tables are free of insertion, modification
(update), and deletion anomalies.

First Normal Form (1NF)
• Relation is in First Normal Form (1NF) if each

column is a single, atomic value.

• Relation is in 1NF if every cell in the table
contains one and only one value.

• Relation that is not in 1NF is known as
unnormalized or UNF (0NF). A relation that is in
UNF will have composite of multi-valued
attributes.

First Normal Form
• The table below stores teachers and

departments information.
• This table is in 1NF because every attribute is

atomic.

First Normal Form
• Consider the relation below.
• It is in UNF (not in 1NF).

Second Normal Form (2NF)

• Relation that is in Second Normal Form
(2NF) is in 1NF and has no partial
dependencies on the PK.

• Second normal form is associated with
modification anomaly.

Partial dependency
• A dependency X -> Y is a partial dependency if

there exists an attribute A that is part of X that
can be removed from X and the dependency still
holds.

• Example: Teachers and Courses table.
• PK is {teacher_id, course_id}

Partial dependency
• Also suppose this relation has the following

dependencies:
FD1: {teacher_id, course_id} -> {last_name,
course_name, credits}
FD2: {teacher_id} -> {last_name}
FD3: {course_id} -> {course_name, credits}

• FD1 is a partial dependency
• FD2 and FD3 are full dependencies.

Third Normal Form (3NF)
• Relation is in Third Normal Form (3NF) if it

is in 2NF and it contains no attributes that
are transitively dependent on the Primary
Key.

• Third normal form is defined in terms of
transitive dependencies and is associated
with insertion and deletion anomalies.

Transitive dependency
• Transitive dependency is a condition where X,

Y, and Z are attributes of a relation such that if
X→Y and Y→Z, then Z is transitively dependent
on X via Y.

• Example: Students and Groups table.
• PK is student_id.

Transitive dependency
• The relation has the following functional

dependencies:
{student_id} -> {last_name, group_id,
group_name}
{group_id} -> {group_name}

• This relation contains a transitive dependency
because

{student_id} -> {group_id} -> {group_name}

Decomposition

• Decomposition is the process of breaking down
in parts or elements.

• It breaks the table into multiple tables in a
database.

• It should always be lossless, because it confirms
that the information in the original relation can be
accurately reconstructed based on the
decomposed relations.

Normalization
• Let’s normalize two of the relations that we have

looked at.
• First, Students and Groups relation.

Normalization
• We said this relation contains a transitive dependency,

and, thus, violates third normal form. We need to remove
the transitive dependency from the table.

• We do this by breaking the relation into two tables:
Students and Groups.

Normalization
• Now, Teachers and Courses table.

• PK of this relation was {teacher_id, course_id}.

Normalization
• Also, recall that the FDs for this relation were

FD1: {teacher_id, course_id} -> {last_name,
course_name, credits}
FD2: teacher_id -> last_name
FD3: course_id -> course_name, credits

• Because of this relation’s partial dependencies, it violates
2NF. To bring it to 2NF, we create three relations.

Summary

• Typically, a 3NF relation is considered a good
database design – the normalizing process
usually ends once 3NF is attained.

• How do we remove functional dependencies that
violate a given normal form?

• We break a relation into many smaller relations
while still maintaining the relationship among the
data.

Summary

Examples for
CourseWork.Part 3

Case 1: UNF to 1NF (vers. 1)

Contacts was divided like ph_number_1,
ph_number_2, e-mail

Case 1: UNF to 1NF (vers. 2)

Case 2: 1NF to 2NF

Before:
FD1: {teach_id, course_id} -> {teach_name,
course_name, group_id}
FD2: {teach_id} -> {teach_name}
FD3: {course_id} -> {course_name}

Case 3: 2NF to 3NF

Before:
FD1: {sch_id} -> {teach_id, course_id, teach_name,
course_name, group_id}
FD2: {teach_id} -> {teach_name}
FD3: {course_id} -> {course_name}

Books
• Connolly, ThomasM. Database Systems: A Practical Approach

to Design, Implementation, and Management / Thomas M.
Connolly, Carolyn E. Begg.- United States of America: Pearson
Education

• Garcia-Molina, H. Database system: The Complete Book / Hector
Garcia-Molina.- United States of America: Pearson Prentice Hall

• Sharma, N. Database Fundamentals: A book for the community
by the community / Neeraj Sharma, Liviu Perniu.- Canada

• E.F. Codd, "Further Normalization of the Data Base Relational
Model"

Question
Through normalization, update anomalies

a) can be maximized
b) can be eliminated
c) is usually left unchanged
d) can be minimized but not eliminated

Question
Which of the following statements concerning normal
forms is true?

a) A relation that is in second normal form is also in first
normal form.

b) Each normal form contains a state of independent
properties, unrelated to other normal forms.

c) The lower the normal form number, the better the
schema design is.

d) Schemas that are in second normal form are considered
the best.

Question
For a relation to be in 3NF, it should not
contain _____ attribute that is transitively
dependent on _____.

a) a non-primary key, the primary key
b) a primary key, a non-primary key
c) a primary key, a foreign key
d) a non-primary key, a foreign key

Question
Consider a table with atomic attributes A, B, and C and the following
functional dependencies.
A -> B
B -> C

If the primary key of this table is attribute A, then this relation
satisfies which of the following normal forms?
1. First
2. Second
3. Third

a) I and II only
b) I, II and III
c) I only
d) None

