
Databases Design. Introduction to SQL

LECTURE 5

SQL
Data Definition Language

Review of last lecture

• Normalization and Normal Forms

• 3NF relation is considered a «good»
database design

• Improvement of a database design

Database Design stages

• Subject Area Analysis
• Conceptual Design
• Logical Design
• Physical Design

SQL
• SQL (Structured Query Language) is a

special-purpose programming language
designed for managing data held in a
relational database management system
(RDBMS).

• Based upon relational algebra, SQL
includes a data definition language (DDL)
and a data manipulation language (DML).

SQL DDL
Data Definition Language (DDL) defines constructs
that structure the data in the database.
DDL statements are used to build and modify the
structure of your tables and other objects in the
database:
• CREATE DB
• CREATE TABLE
• ALTER TABLE
• DROP TABLE

• Note: the dialect of SQL supported by PostgreSQL
will be used here.

Top-Down view of SQL DDL
• At the ‘top’ a database is created
• Further down the hierarchy, a set of tables are created
• At the bottom of the hierarchy data types are created

Creating a Database

PostgreSQL has the CREATEDB command
that creates the database.

The create schema command takes two
arguments

• database name
• owner of the database

Creating a Table

The CREATE TABLE statement allows to
define

• name of the table
• name of each column
• domain of each column
• constraints on the columns (keys and other

constraints)

Creating a Table
• Syntax:

CREATE TABLE table_name (
column1name column1domain,
column2name column2domain,…,
columnNname columnNdomain,
PRIMARY KEY (pkcolumn(s)),
FOREIGN KEY (column) REFERENCES

table(column));

CREATE TABLE: example
CREATE TABLE Groups(
group_id int,
group_name varchar(15),
PRIMARY KEY (group_id));

or

CREATE TABLE Groups(
group_id int PRIMARY KEY ,
group_name varchar(15));

CREATE TABLE: example with FK
CREATE TABLE Groups(
group_id int,
group_name varchar(15),
PRIMARY KEY (group_id));

CREATE TABLE Students(
stud_id int,
first_name varchar(20),
last_name varchar(20),
group_id int,
PRIMARY KEY (stud_id),
FOREIGN KEY (group_id) REFERENCES Groups(group_id));

CREATE TABLE: example with FK
CREATE TABLE Students(
stud_id int PRIMARY KEY,
first_name varchar(20),
last_name varchar(20),
group_id int,
FOREIGN KEY (group_id) REFERENCES Groups(group_id));

or

CREATE TABLE Students(
stud_id int PRIMARY KEY,
first_name varchar(20),
last_name varchar(20),
group_id int REFERENCES Groups(group_id));

Constraints
Constraints are the rules that we can apply on the type of data in a table. That is, we
can specify the limit on the type of data that can be stored in a particular column in a
table using constraints.
The available constraints in SQL are:

•NOT NULL: This constraint tells that we cannot store a null value in a column. That is,
if a column is specified as NOT NULL then we will not be able to store null in this
particular column any more.
•UNIQUE: This constraint when specified with a column, tells that all the values in the
column must be unique. That is, the values in any row of a column must not be
repeated.
•PRIMARY KEY: A primary key is a field which can uniquely identify each row in a table.
And this constraint is used to specify a field in a table as primary key.
•FOREIGN KEY: A Foreign key is a field which can uniquely identify each row in a
another table. And this constraint is used to specify a field as Foreign key.
•CHECK: This constraint helps to validate the values of a column to meet a particular
condition. That is, it helps to ensure that the value stored in a column meets a specific
condition.
•DEFAULT: This constraint specifies a default value for the column when no value is
specified by the user.

Defining Constraints

In addition to PK and FK constraints the
following types of constraints can also be
added:

• CHECK
• NOT NULL
• UNIQUE

CHECK

• Check constraints tell the DBMS the
acceptable values for a column

• We can build this constraint using the
CHECK keyword in a CREATE TABLE
statement.

CHECK example
• Consider the bank account example. One

integrity constrain could be that balances
must be positive.

CREATE TABLE account(
id integer,
balance float CHECK (balance>0),
PRIMARY KEY (id));

NOT NULL
• NOT NULL constraints ensures values exist in

all rows for a given column.

• Suppose we define balance to be NOT NULL in
the Account table.

• Anytime we insert an Account record, a balance
must be defined. Otherwise, an error is thrown.

• PKs have an implicit NOT NULL constraint.

NOT NULL example
• Query the ACCOUNT table such that

balances have a not-null constraint:

CREATE TABLE account (
id integer,
balance float NOT NULL,
PRIMARY KEY (id));

NOT NULL with CHECK
• Query the ACCOUNT table such that

balances have a not-null constraint:

CREATE TABLE account (
id integer,
balance float NOT NULL CHECK (balance>0),
PRIMARY KEY (id));

UNIQUE
• Unique constraints ensure that values in

columns are unique.
• Unique allows to model alternate key
(secondary key).

• One or more columns may be defined as
unique – so the combination of two
columns may be unique, but the two
columns themselves need not be unique.

UNIQUE example
• If the CUSTOMER table had unique names

– then Name is an alternate key.
• We can create this CUSTOMER table as

CREATE TABLE Customer (
id integer,
name varchar(6),
PRIMARY KEY (id),
UNIQUE (name));

UNIQUE example
CREATE TABLE Customer (
id int,
name varchar(6),
PRIMARY KEY (id),
UNIQUE (name));

or

CREATE TABLE Customer (
id int PRIMARY KEY,
name varchar(6) UNIQUE);

Data types
SQL allows columns to be defined as one of
five main classes of data:

• Numeric
• Character strings
• Bit strings
• Temporal Data
• Boolean Data

Numeric Data
Exact numbers may be INTEGER (or INT),

SMALLINT, BIGINT
• Like the C programming language’s short data

type, SMALLINT ranges between -32768 to
32767 inclusive.

• INTEGER ranges between -2,147,483,648 and
2,147,483,647 inclusive.

• BIGINT ranges between
-9,223,372,036,854,775,808 and
9,223,372,036,854,775,807 inclusive.

Numeric Data

• Approximate numbers are numbers that
cannot be represented exactly, such as real
numbers (pi).

• We represent such numbers as floating-
point values of various precisions (numbers
of decimal places).

Character Strings
• Character strings are sequences of printable

characters

• All character strings in SQL are started and ended
using single quotes. For example, ‘string’ is a valid
SQL string.

• Character strings come in two flavors:
• Fixed-length strings
• Variable-length strings

Character Strings
• Fixed-length character strings are defined to be of a given

length, say 10 characters.
• All values in the column of this type have 10

characters.
• If any rows have less than 10 characters, they are

padded with spaces to fill up the space.

• Columns of this type are defined as char(n) where n is the
length of the string. So, a ten-character string is defined as
char(10).

• The default length is 1, so char defines a 1-character
column.

Character Strings
• Variable-length character strings have a maximum

length, like fixed-length character strings, but, unlike
fixed-length strings, variable-length strings that are
shorter than the maximum length are not padded
with spaces.

• Variable-length strings are know as varchars. We
define a variable length string with a maximum of 10
characters as varchar(10).

Temporal Data
• SQL provides support for storing date and time

data.

• All SQL implementations support the DATE
data type.

• PostgreSQL supports timestamp, interval,
date, time and time with time zone types.

Temporal Data

Boolean Data Types
• PostgreSQL (and most other dialects of

SQL) support the boolean data type.

• Valid forms of true are:
TRUE, ‘t’, ‘true’, ‘y’, ‘yes’, ‘1’

• Valid forms of false are:
FALSE, ‘f’, ‘false’, ‘n’, ‘no’, ‘0’

Altering a Table
• When you create a table and you realize that you

made a mistake, or the requirements of the
application change, you can drop the table and create
it again. But this is not a convenient option if the table
is already filled with data, or if the table is referenced
by other database objects (for instance a foreign key
constraint). Therefore PostgreSQL provides a family
of commands to make modifications to existing
tables.

• ALTER TABLE command is used to modify a
structure of an existing table.

Altering a Table
The syntax is

ALTER TABLE table_name …;

Possible modifications:
• Add / remove columns
• Add / remove constraints
• Change column data types
• Rename columns / tables
• Etc.

Add column
• Suppose we wanted to add a column to bank

database’s account table that stored the data the
account was opened. The original account table
was created as

CREATE TABLE account (
id integer,
balance float,
PRIMARY KEY (id));

Add column
• The syntax is

ALTER TABLE table_name ADD COLUMN
column_name datatype;

• So, to add the opening date of an account,
we write the following query:
ALTER TABLE account ADD COLUMN

opendate date;

Add column with constraints
• The syntax is

ALTER TABLE table_name ADD COLUMN
column_name datatype constraint;

• So, to add the opening date of an account,
we write the following query:
ALTER TABLE account ADD COLUMN

acc_value int CHECK (acc_value < 0);

Drop column
• Removing a column: the DROP COLUMN statement

is used with ALTER command

• The syntax is:
ALTER TABLE table_name DROP COLUMN

column_name;

• So, to drop the opendate column of account, we write:
ALTER TABLE account DROP COLUMN opendate;

Data type
• The basic syntax of ALTER TABLE to change

the data TYPE of a column in a table is as
follows:

ALTER TABLE table_name ALTER COLUMN
column_name TYPE datatype;

• Example:

ALTER TABLE account ALTER COLUMN
opendate TYPE varchar(15);

Rename column
• Rename a column: use RENAME

COLUMN statement in the ALTER TABLE
command.

• To rename the Account table’s Balance column to
AccountBalance we write:

ALTER TABLE account RENAME COLUMN
balance TO accountbalance;

Rename table
• Renaming a table: use the RENAME keyword in

the ALTER TABLE command.

• To rename the Account table to Bankaccount, we
write:

ALTER TABLE account RENAME TO
bankaccount;

Add foreign key
• SQL DDL also allows us to add constraints to

tables using the ALTER TABLE command. We
can add key, unique, not-null, and check
constraints.

• In the bank example, suppose we had the
Customer and Account tables as before, but we
did not place foreign keys on the tables.

• Query to add foreign key:
ALTER TABLE customer ADD FOREIGN KEY

(accountId) REFERENCES account (id);

Add and drop NOT NULL

• The basic syntax of ALTER TABLE to add a NOT
NULL constraint to a column in a table is as
follows:

ALTER TABLE table_name ALTER COLUMN
column_name SET NOT NULL;

ALTER TABLE table_name ALTER COLUMN
column_name DROP NOT NULL;

DROP TABLE
• DROP TABLE statement is used to remove a table

definition and all associated data and constraints for that
table.

• Delete a table from the database using the DROP TABLE
command (suppose we want to delete the Account table):

DROP TABLE account;

Note: once we drop a table, it deletes all data in the
table and removes the table from the database.

To empty a table of rows without destroying the table,
use DELETE statement.

DROP TABLE with CASCADE
Tables: Products, Orders (references Products)

DROP TABLE products;

NOTICE: constraint orders_product_id_fkey on table orders depends on
table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

DROP TABLE with CASCADE

DROP TABLE products CASCADE;
• In this case the command doesn’t delete the Orders

table, only Foreign Key constraint.

• RESTRICT keyword instead of CASCADE
determines the default behavior: prevents removal
of objects from which other objects depend on.

DROP TABLE full syntax
• Full syntax of DROP TABLE command:

DROP TABLE [IF EXISTS] table_name [, ...]
[CASCADE | RESTRICT]

• IF EXISTS Do not throw an error if the table does
not exist. A notice is issued in this case.

Books
• Connolly, ThomasM. Database Systems: A Practical Approach

to Design, Implementation, and Management / Thomas M.
Connolly, Carolyn E. Begg.- United States of America: Pearson
Education

• Garcia-Molina, H. Database system: The Complete Book / Hector
Garcia-Molina.- United States of America: Pearson Prentice Hall

• Sharma, N. Database Fundamentals: A book for the community
by the community / Neeraj Sharma, Liviu Perniu.- Canada

• www.postgresql.org/docs/manuals/

http://www.postgresql.org/docs/manuals/

