
Databases Design. Introduction to SQL

LECTURE 6

SQL.

Data Manipulation Language

SQL

• SQL (Structured Query Language) is a special-
purpose programming language designed for
managing data held in a relational database
management system (RDBMS).

• SQL keywords are NOT case sensitive: select is
the same as SELECT

• All SQL queries must end with a semicolon “;”

• Semicolon is the standard way to separate each
SQL statement in DBMS that allow more than one
SQL statement to be executed in the same call.

SQL Comments

• Comments are used to explain sections of

SQL statements, or to prevent execution of

SQL statements.

• Single line comments start with --.

• Any text between -- and the end of the line will

be ignored (will not be executed).

--Select all:

SELECT * FROM Students;

SQL Comments

• Multi-line comments start with /* and end with */.

• Any text between /* and */ will be ignored.

/*Select all the columns of all the records

in the Students table:*/

SELECT * FROM Students;

• To ignore just a part of a statement, also use the /*

*/ comment.

SELECT lname, /*fname,*/ gpa

FROM Students;

SQL Structure

• DDL (Data Definition Language)

• DML (Data Manipulation Language)

• TCL (Transaction Control Language)

• DCL (Data Control Language)

Last lecture

Data Definition Language (DDL) defines

constructs that structure the data in the

database.

DDL statements:

• CREATE DB

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

Data Manipulation Language

Data Manipulation Language (DML) is a
sublanguage of SQL and it's used for selecting,
inserting, deleting and updating data in a
database.

DML statements:

• INSERT

• UPDATE

• DELETE

• SELECT

DDL vs. DML

When a table is created (with DDL

statements), it contains no data (data -

DML).

INSERT

INSERT statement is used to insert new records
in a table.

Syntax:

INSERT INTO table_name VALUES (values);

• In SQL all strings and dates must be single-
quoted.

• The data values are listed in the order in
which the columns appear in the table,
separated by commas.

INSERT: example 1

To insert a record in the Students table, we write:

INSERT INTO Students

VALUES (1, ‘Firstname1’, ‘LastName1’,

’31.12.1994’,1);

So, we would be incorrect in writing:

INSERT INTO Students

VALUES (‘Firstname1’, ‘LastName1’, 1,

’31.12.1994’, 1);

INSERT: example 2

It’s possible to insert a subset of the data in a table. We

can tell which columns we would like to insert:

INSERT INTO table_name (column(s))

VALUES (values);

Insert a new record into the Students table for a student

with id=2 and no birthdate:

INSERT INTO Students (stud_id, f_name,

l_name, group_id)

VALUES (2, ‘Firstname2’, ‘Lastname2’, 1);

INSERT: example 3

Data is conceptually inserted one row at a

time. However you can insert multiple rows in

a single command:

INSERT INTO Students (stud_id, f_name,

l_name, group_id)

VALUES (1, ‘FirstName1’, ‘LastName1’, 1),

(2, ‘FirstName2’, ‘LastName2’, 1);

Referential Integrity (CREATE TABLE)

• Condition for using referential integrity:

The table that the FK references must have been

created before the foreign keys are defined

Ex., the Groups table must be created first, and

then the Students table (with its FK) may be

created.

Referential Integrity (CREATE TABLE)

CREATE TABLE Groups(

group_id int,

group_name varchar(15),

PRIMARY KEY (group_id));

CREATE TABLE Students(

stud_id int,

first_name varchar(20),

last_name varchar(20),

bdate date,

group_id int,

PRIMARY KEY (stud_id),

FOREIGN KEY (group_id) REFERENCES Groups(group_id));

Referential Integrity (INSERT)

Rows can’t be inserted in the Students table without

a matching rows in the Groups table. This record is

unavailable while the Groups table is empty:

INSERT INTO Students

VALUES (1, ‘FirstName1’, ‘LastName1’,’31.12.1994’,1);

ERROR: insert or update on table “students" violates

foreign key constraint “students_group_id_fkey"

DETAIL: Key (group_id)=(1) is not present in table

“groups".

UPDATE

SQL provides the UPDATE statement to change
values in tables.

Syntax:

UPDATE table_name

SET column = value [, column = value, …]
[WHERE condition] ;

• The condition in the WHERE portion of the UPDATE
statement is known as a selection condition.

• A selection condition is similar to if-statements in a
traditional programming language.

UPDATE: example 1

Suppose we have a student with stud_id=2

and group_id=1 that needs to be updated to

group_id=2.

We would write this as

UPDATE Students

SET group_id=2

WHERE stud_id=2;

UPDATE: examples 2, 3

The SQL command to change the name of the
student with stud_id=1 to Aigul:

UPDATE Students

SET f_name=‘Aigul’

WHERE stud_id=1;

The SQL command to change the birthdate of the
student with stud_id=2 to 15.10.1994:

UPDATE Students

SET bdate=’15.10.1994’

WHERE stud_id=2;

UPDATE: example 4

• Each column can be updated separately; the
other columns are not affected.

• You can update individual rows, all the rows in
a table, or a subset of all rows.

• For example, this command updates all
students that have group_id=1 to have
group_id=2:

UPDATE Students

SET group_id=2

WHERE group_id=1;

UPDATE: example 5

• The expression for the new value can refer to the

existing value(s) in the row.

• If you want to raise the price of all products by

10% you could use:

UPDATE Products SET price = price*1.10;

• We also left out the WHERE clause. If it is

omitted, it means that all rows in the table are

updated. If it is present, only those rows that

match the WHERE condition are updated.

DELETE: example 1

SQL provides the DELETE statement to

delete data from tables.

Syntax:

DELETE FROM table_name

[WHERE condition];

DELETE: example 2

• To delete all rows in the Students table:

DELETE FROM Students;

• To delete the student with stud_id=2:

DELETE FROM Students

WHERE stud_id=2;

DELETE: example 3

• To remove all rows from the Products

table that have a price of 10:

DELETE FROM Products

WHERE price=10;

Next lecture: SELECT

SQL allows to query data with SELECT

statement.

Syntax:

SELECT attribute(s)

FROM table(s);

Books

• Connolly, Thomas M. Database Systems: A PracticalApproach

to Design, Implementation, and Management / Thomas M.

Connolly, Carolyn E. Begg.- United States of America: Pearson

Education

• Garcia-Molina, H. Database system: The Complete Book / Hector

Garcia-Molina.- United States of America: Pearson Prentice Hall

• Sharma, N. Database Fundamentals: A book for the community

by the community / Neeraj Sharma, Liviu Perniu.- Canada

• www.postgresql.org/docs/manuals/

http://www.postgresql.org/docs/manuals/

Question

Third normal form is based on the concept

of …

• Transitive dependency

• Partial dependency

• Foreign dependency

• None of the given

Question

A table in 1NF in which the Primary key

consists of two of its three attributes:

• Always violates 2NF

• Never violates 2NF

• May violate 2NF

• None

Question

A table has fields F1, F2, F3, F4 and F5 with the

following functional dependencies:

F1 -> F3,

F2 -> F4,

(F1, F2) -> F5.

In terms of normalization, this table is in …

• 1NF

• 2NF

• 3NF

• UNF

