
Databases Design. Introduction to SQL

LECTURE 9

Queries

SELECT statement
• Query operations facilitate data retrieval from

one or more tables.
• The result of any query is a table. The result

can be further manipulated by other query
operations.

• Syntax:
SELECT attribute(s)
FROM table(s)
[WHERE selection condition(s)];

Aliasing in SQL
• A PostgreSQL alias assigns a table or a column a

temporary name in a query. The aliases only exist
during the execution of the query.

• The following illustrates the syntax of the table
alias:
SELECT column_list
FROM table_name AS alias_name;

• The AS keyword in the table alias syntax is
optional.

Aliasing in SQL
The table alias has several uses:

• First, if you must qualify a column name with a long
table name, you can use the table alias to make
your query more readable.

• The practical uses are when you query data from
multiple tables that have the same column names.
In this case, you must qualify the columns using the
table names.

• Aliasing table names during join operations makes
them a lot more understandable.
SELECT c.name, t.name
FROM Courses c, Teachers t, Schedule s
WHERE c.course_id = s.course_id AND
t.teach_id = s.teach_id;

Aliasing in SQL

Aliasing in SQL
• The following shows the syntax of column alias:

SELECT column_name AS alias_name
FROM table_name;

• In this syntax, the column_name is assigned
as alias_name. The AS keyword is optional

• Rename the fname column to First_Name:
SELECT fname AS First_name
FROM Students;

String Concatenation
• In the Students table first and last names are stored

as two attributes. For combining them into one
column, use the || operator:
SELECT fname || lname
FROM Students;

• Notice that the names concatenated together without
a space in between. We can add such a space using:
SELECT fname || ‘ ‘ || lname
FROM Students;

Distinct Results
• The DISTINCT clause is used in the SELECT statement

to remove duplicate rows from a result set.
The DISTINCT clause keeps one row for each group of
duplicates.

• The syntax of the DISTINCT clause:
SELECT DISTINCT column_name
FROM table_name;

• To select the distinct last names from the Students:
SELECT DISTINCT lname
FROM Students;

Distinct Results
If you specify multiple columns, the DISTINCT

clause will evaluate the duplicate based on the
combination of values of these columns.

SELECT DISTINCT column_1, column_2
FROM table_name;

In this case, the combination of both column_1
and column_2 will be used for evaluating
duplicate.

NULL Values
• NULL indicates absence of a value in a

column.
• NULL is not a value, therefore, you cannot

compare it with any value like a number or a
string.

• Since NULL may appear in a column, we
must be able to detect its presence.

• For this reason, SQL provides the IS NULL
and IS NOT NULL operators.

NULL Values
• Consider the following query:

SELECT stud_id, fname
FROM Students
WHERE group_id IS NULL;

• This query returns record of each student
where the group_id is null (is empty).

Students table in the database

… WHERE group_id IS NULL;

… WHERE group_id IS NOT NULL;

IS NULL and IS NOT NULL

stud_id fname group_id
1 student1 2
2 student2 2
3 student3

stud_id fname
3 student3

stud_id fname
1 student1
2 student2

Comparison Operators
• One of the most common selection

conditions is a range condition. Range
condition filters results where the values in a
column are between one or two values.

• There are two ways to perform a range
operation:
– Using the <, <=, >, >= operators.
– Using the BETWEEN operator.

• Comparison operators are available for all relevant data
types.

• All comparison operators are binary operators that return
values of type Boolean.

• expressions like 1 < 2 < 3 are not valid (because there is
no < operator to compare a Boolean value with 3).

Comparison Operators
Operator Description
< less than
> greater than
<= less than or equal to
>= greater than or equal to
= equal

<> or != not equal

Comparison Operators
• A range condition is specified using the <,<=,>

and >= operators as
SELECT …
FROM …
WHERE column < value1 AND column > value2;

• Example: Query the first and last names of all
students with GPA between 3 and 4:
SELECT fname, lname
FROM Students
WHERE gpa >= 3 AND gpa <= 4;

BETWEEN operator
• We may render the same select condition

in a form that is closer to English using the
BETWEEN operator.

• The query on the previous slide can be
rewritten as
SELECT fname, lname
FROM Students
WHERE gpa BETWEEN 3 AND 4;

Comparison Operators

• The BETWEEN operator has a negation:
NOT BETWEEN.

• The BETWEEN operator is defined for most
data types including numeric and temporal
data.

BETWEEN treats the endpoint values as included in
the range. NOT BETWEEN does the opposite
comparison.

a BETWEEN x AND y
is equivalent to
a >= x AND a <= y

a NOT BETWEEN x AND y
is equivalent to
a < x OR a > y

BETWEEN and NOT BETWEEN

Pattern Matching

SQL provides the
• LIKE operator to support

comparisons of partial strings;
• % and _ characters to match strings.

The LIKE operator is used in conjunction with
% and _ characters.

Pattern Matching
• The % character matches an arbitrary number

of characters, including spaces.
• So, vinc% would match each of the following:

vince, vincent, vincenzo, vinc

• The _ character matches a single arbitrary
character.

• So, v_nce will match each of the following:
vince, vance, vbnce, vnnce, v1nce, and so on.

Pattern Matching

• Example with %: Query the phone number
if it starts with 412.

SELECT phone
FROM Students
WHERE phone LIKE ‘412%’;

Pattern Matching
• Example with _: Query the phone number if

it starts with ‘20’ and ends with ‘-555-4335’.

SELECT phone
FROM Students
WHERE phone LIKE ‘20_-555-4335’;

Converting Data Types
• PostgreSQL CAST is used to convert from one data

type into another.
• First, you specify an expression that can be a constant

or a table column, that you want to convert. Then, you
specify the target type which you want to convert to.

• Syntax:
CAST (expression AS type)

• Example:
SELECT CAST ('100' AS INTEGER);
SELECT CAST (phone AS varchar (20))
FROM Students;

Converting Data Types
• Besides the type CAST syntax, following syntax can be

used to convert a type into another:
expression::type

• Notice that the cast syntax with :: is PostgreSQL
specific and does not conform to SQL.

• Example:
SELECT '100'::INTEGER;

Books
Connolly, Thomas M. Database Systems: A Practical Approach
to Design, Implementation, and Management / Thomas M.
Connolly, Carolyn E. Begg.- United States of America: Pearson
Education
Garcia-Molina, H. Database system: The Complete Book /
Hector Garcia-Molina.- United States of America: Pearson
Prentice Hall
Sharma, N. Database Fundamentals: A book for the community
by the community / Neeraj Sharma, Liviu Perniu.- Canada

www.postgresql.org/docs/manuals/
www.postgresql.org/docs/books/

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/books/

Online SQL Training

•sqlzoo.net

•sql-ex.ru

