
Databases Design. Introduction to SQL

LECTURE 11

Nested queries

The Complete Select Statement

SELECT attribute(s)
FROM table(s)

[WHERE selection condition(s)]
[GROUP BY condition]
[HAVING selection condition]
[ORDER BY condition]

Nested Queries
Nested query (Subquery or Inner

query) is a query within another SQL query.
Subquery is used to return data that will

be used in the main query as a condition to
further restrict the data to be retrieved.

Subqueries allow to express a selection
condition using a tradition SELECT-FROM-
WHERE statement.

Nested Queries
Subqueries can be used with the SELECT,

INSERT, UPDATE, and DELETE statements
along with the operators like =, <, >, >=, <=, IN,
etc.

There are a few rules that subqueries must
follow:
• Subqueries must be enclosed within

parentheses – (…).
• Subqueries that return more than one row can

only be used with multiple value operators
such as the IN operator.

Nested Queries
• Subqueries are most frequently used with

the SELECT statement. For example, the
basic syntax for using subquery in WHERE
clause:

SELECT attribute(s)
FROM table(s)
WHERE attribute OPERATOR

(SELECT attribute(s)
FROM table(s)
[WHERE]);

Nested Queries
• There are three types of subqueries: scalar, row, table.

Scalar subquery returns a single column and a single
row (a single value).

• Example: Return the first and last name of the student
who has group’s name = ‘CSSE-01‘.
SELECT fname, lname
FROM Students
WHERE group_id =

(SELECT group_id
FROM Groups
WHERE name=‘CSSE-01’);

• Using of сomparison operators is possible
only when a result of a subquery is one
value (one field).

Subqueries with comparison
operators

Operator Description
< less than
> greater than
<= less than or equal to

>= greater than or equal
to

= equal
<> or != not equal

SELECT fname, lname, gpa
FROM Students
WHERE gpa > (SELECT avg(gpa)

FROM Students);

SELECT fname, lname, gpa
FROM Students
WHERE
gpa > (SELECT avg(gpa) FROM Students)
AND
gpa < (SELECT max(gpa) FROM Students);

Subqueries with comparison
operators

Subqueries with comparison operators

SELECT f_name
FROM Faculties
WHERE f_id = (

SELECT f_id
FROM Departments
WHERE d_id = (

SELECT d_id
FROM Groups
WHERE g_name = ‘CSSE - 01’));

Set Membership

• The IN and NOT IN operators can be
used to test simple set membership.

• IN and NOT IN are typically used in
subqueries in WHERE. For example,

WHERE … IN (SELECT …);
WHERE … NOT IN (SELECT …);

Set Membership: example

SELECT c.name
FROM Course c, Schedule s
WHERE c.course_id = s.course_id
AND s.teach_id IN (

SELECT t.teach_id
FROM Teachers t, Department d
WHERE t.dep_id=d.dep_id
AND d.name=‘CET’);

Another query with the identical result

SELECT c.name
FROM Courses c, Schedule s, Teachers t,

Department d
WHERE c.course_id = s.course_id

AND s.teach_id = t.teach_id
AND t.dep_id=d.dep_id
AND d.name=‘CET’;

EXISTS and NOT EXISTS
• SQL allows testing the emptiness of a

subquery’s result using the EXISTS and NOT
EXISTS keywords.

• The EXISTS keyword tests if a result is not
empty. NOT EXISTS tests if a result is empty.

• If it returns at least one row, the result of EXISTS
is "true"; if the subquery returns no rows, the
result of EXISTS is "false".

EXISTS: example

SELECT fname, name
FROM Students
WHERE EXISTS (

SELECT *
FROM Students
WHERE group_id = 1);

… attribute OPERATOR ANY (subquery)

• The ANY operator compares the value to each
value returned by the subquery. Therefore
ANY keyword (which must follow a comparison
operator) returns TRUE if the comparison is
TRUE for ANY of the values in the column that
the subquery returns.

• "IN" is equivalent to "= ANY".

ANY

SELECT *
FROM Students s
WHERE s. bdate < ANY (

SELECT t.bdate
FROM Teachers t);

ANY: example

… attribute OPERATOR ALL (subquery)

• The ALL operator compares value to every
value returned by the subquery. The result of
ALL is true if all rows yield true. The result is
false if any false result is found.

• "NOT IN" is equivalent to "<> ALL".

ALL

SELECT *
FROM Students s
WHERE s. bdate < ALL (

SELECT t.bdate
FROM Teachers t);

ALL: example

• A subquery can also be found in SELECT
or FROM clauses.

SELECT num_of_stud
FROM (

SELECT group_id, count(*)
AS num_of_stud

FROM Students
GROUP BY group_id) StudNum;

Subquery in FROM (1)

HAVING vs Subquery
• Example with HAVING from the last lecture:

SELECT group_id, count(*)
FROM Students
GROUP BY group_id
HAVING count(*) > 20;

• The same result with subquery:
SELECT *
FROM (SELECT group_id, count(*) AS num_of_stud

FROM Students
GROUP BY group_id) StudNum

WHERE num_of_stud > 20;

Subqueries in FROM (2)
SELECT *
FROM
(SELECT count(*) FROM students) students,
(SELECT count(*) FROM teachers) teachers;

count count
… … .

Subquery in INSERT (1)
• Subqueries also can be used with INSERT

statements. The INSERT statement uses the
data returned from the subquery to insert into
another table.

• Example:
INSERT INTO Teachers (fname, lname)

(SELECT fname, lname
FROM Students
WHERE stud_id = 01);

INSERT INTO Teachers (teach_id, fname,
lname, dep_id)
VALUES (1, ‘…’,’…’,

(SELECT dep_id
FROM Departments
WHERE dep_name=‘CET’));

Subquery in INSERT (2)

• The subquery can be used in conjunction
with the DELETE statement.

DELETE
FROM Students
WHERE group_id =

(SELECT group_id
FROM Groups
WHERE name=‘CSSE-01’);

Subquery in DELETE

• The subquery can be used in conjunction with the
UPDATE statement. Either single or multiple
columns in a table can be updated when using a
subquery with the UPDATE statement.

UPDATE Students
SET group_id=group_id + 1
WHERE group_id =

(SELECT group_id
FROM Groups
WHERE name = ‘CSSE-01’);

Subquery in UPDATE

Books
• Connolly, Thomas M. Database Systems: A Practical

Approach to Design, Implementation, and Management /
Thomas M. Connolly, Carolyn E. Begg.- United States of
America: Pearson Education

• Garcia-Molina, H. Database system: The Complete Book /
Hector Garcia-Molina.- United States of America: Pearson
Prentice Hall

• Sharma, N. Database Fundamentals: A book for the
community by the community / Neeraj Sharma, Liviu Perniu.-
Canada

• www.postgresql.org/docs/manuals/
• www.postgresql.org/docs/books/

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/books/

