
Databases Design. Introduction to SQL

LECTURE 12

CTE. Views

Common Table Expression
• A CTE (Common Table Expression) is a temporary

result set which you can reference within another SQL
statement.

• Common Table Expressions are temporary in the sense
that they only exist during the execution of the query.

• Common Table Expressions are typically used to simplify
complex joins and subqueries in PostgreSQL.

Syntax

WITH cte_name AS (
cte_query_definition)

statement;

• Use the CTE like a table in SQL statements.

Example 1 with subquery

SELECT *
FROM (SELECT group_id, count(*) AS

num_of_stud
FROM Students
GROUP BY group_id) StudNum

WHERE num_of_stud > 20;

Example 1 with CTE

WITH StudNum AS (
SELECT group_id, count(*) AS num_of_stud
FROM Students
GROUP BY group_id

)

SELECT *
FROM StudNum
WHERE num_of_stud > 20;

Example 2 with subquery

SELECT *
FROM
(SELECT count(*) FROM students) students,
(SELECT count(*) FROM teachers) teachers;

Example 2 with CTE
WITH Stud AS (

SELECT count(*)
FROM students),

Teach AS (
SELECT count(*)
FROM teachers)

SELECT *
FROM Stud, Teach;

Example 3: CTE with join

WITH StudNum AS (
SELECT group_id, count(*) AS num_of_stud
FROM Students
GROUP BY group_id

)

SELECT g.name, s.num_of_stud
FROM Groups g
INNER JOIN StudNum s
ON g.group_id = s.group_id;

CTE advantages

• Improve readability of the complex queries. You
can use CTEs to organize complex queries in a
more organized and readable manner.

• Ability to create recursive queries. Recursive
queries are queries that reference themselves.

View
View is a virtual table based on the result-set

of an SQL statement.

View contains rows and columns, just like a
real table. The fields in a view are fields from one or
more real tables in the database.

View
• Views do not physically exist.
• Views are virtual tables.

• You can add SQL functions, WHERE, and JOIN
statements to a view and present the data as if the
data were coming from one single table.

• A view always shows up-to-date data! The database
engine recreates the data, using the view's SQL
statement, every time a user queries a view.

• Views are supported by all main DBMS.

Use of view: case 1

• In some cases, we may not want users to
view all information in a table(s).

• Users need to be restricted from
accessing this information.

Use of view: case 2
• In other case, a complex set of relational tables

does not lend itself to easy use by non-database
professionals.

• Consider a clerk at the library performing an
audit. This clerk is only interested in the names
of each member and the number of books those
member have borrowed.

• Should this clerk have to write complex queries
involving aggregate functions and joins over
multiple tables?

• Probably not.

Use of views
Views allow users to do the following:

• Restrict access to the data such that a user can only
see limited data instead of complete table.

• Structure data in a way that users or classes of users
find natural or intuitive.

• Summarize data from various tables, which can be
used to generate reports.

CREATE VIEW
• A view is created using the CREATE VIEW

command in SQL with a SELECT statement on
the defining tables.

• Syntax:
CREATE VIEW view_name
AS
SELECT …;

View example

• Example: create a view named Students_info
that stored only the first and last name from the
Students table.

CREATE VIEW Students_info
AS
SELECT fname, lname
FROM Students;

CREATE OR REPLACE VIEW
• CREATE OR REPLACE VIEW is similar, but if a

view of the same name already exists, it is replaced.
• The new query must generate the same columns

that were generated by the existing view query (that
is, the same column names in the same order and
with the same data types), but it may add additional
columns to the end of the list.

• The calculations giving rise to the output columns
may be completely different.

• CREATE OR REPLACE VIEW is a
PostgreSQL language extension.

CREATE OR REPLACE VIEW
Syntax:
CREATE OR REPLACE VIEW view_name
AS
SELECT …;

Example:
CREATE OR REPLACE VIEW Students_info
AS
SELECT fname, lname, stud_id
FROM Students;

View with joining
• Views may also be built by joining many tables.

• Example: create a view that contains last name and
group’s name of each student.

CREATE VIEW Students_groups
AS
SELECT s.stud_id, s.lname, g.group_id, g.name
FROM Students s, Groups g
WHERE s.group_id = g.group_id;

View deletion

• Views can be deleted using the DROP
VIEW statement.

• Example: delete the Students_groups
view created on the previous slide.

DROP VIEW Students_groups;

View updating

• Updates to views are not simple.

• Recall that views are virtual tables – they do
not physically exist.

• Any updates to views must be mapped onto
the defining tables. If an update cannot be
mapped, then a view is unupdatable.

View updating
Note. For a view to be updatable, the DBMS must
be able to trace any row or column back to its row
or column in the source table.

• In general, a view is updatable if it contains a
single table and contains a primary key.

• Generally, a view is not updatable if it contains
a join operation.

• A view is definitely not updatable if it involves
an aggregate function or a subquery.

View updating
• Use DML command to update view

Students_info:
UPDATE Students_info
SET fname = 'Alan'
WHERE stud_id = 3;

• It’s identical to operation in the physical
table Students.

View updating
• Suppose we slightly altered the view to

include only students with group_id = 2.

CREATE VIEW Group_2
AS
SELECT stud_id, fname, lname, group_id
FROM Students
WHERE group_id = 2;

View
• One problem with updatable views are the

rows that we attempt to insert may violate the
selection condition.

• Suppose we tried to update the view to change
the student’s group_id to 3.

• Will that student still be part of the view?
• No, that student will not be part of the view.

That row will migrate from the view.

Using views as physical tables
• Views can be used like any other real tables in database.

Also you can build view based on other views.

Creating of the view:
CREATE VIEW Students_info
AS
SELECT fname, lname
FROM Students;

• Using of the view:
SELECT * FROM Students_info;

Database Security: Access Control

• The view mechanism provides a powerful and flexible
security mechanism by hiding parts of the database
from certain users.

• The user is not aware of the existence of any attributes
or rows that are missing from the view.

• A view can be defined over several relations with a user
being granted the appropriate privilege to use it, but not
to use the base relations.

• In this way, using a view is more restrictive than simply
having certain privileges granted to a user on the base
relation(s).

Summary
• A view is the dynamic result of one or more relational

operations operating on the base relations to produce another
relation. A view is a virtual relation that does not actually exist
in the database, but is produced upon request by a particular
user, at the time of request.

• Views can represent a subset of the data contained in a table.
–A view can limit the degree of exposure of the tables to the

outer world: a given user may have permission to query
the view, while denied access to the rest of the base table.

–Views can join and simplify multiple tables into a single
virtual table. Views can hide the complexity of data.

• Views take very little space to store; the database contains
only the definition of a view, not a copy of all the data that it
presents.

Books
• Connolly, Thomas M. Database Systems: A Practical

Approach to Design, Implementation, and Management /
Thomas M. Connolly, Carolyn E. Begg.- United States of
America: Pearson Education

• Garcia-Molina, H. Database system: The Complete Book /
Hector Garcia-Molina.- United States of America: Pearson
Prentice Hall

• Sharma, N. Database Fundamentals: A book for the
community by the community / Neeraj Sharma, Liviu Perniu.-
Canada

• www.postgresql.org/docs/manuals/
• www.postgresql.org/docs/books/

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/books/

