


Lecture 15

Practical Applications of Electrical Theory

Senior lecturer: Dosbayev Zh.M.

Electrical theory underpins the technology and devices that power our modern world. From powering our homes to driving industrial machinery, a deep understanding of electrical principles is crucial for engineers, electricians, and anyone working with electricity.

Understanding the Fundamentals

Voltage, Current, Resistance 2

The three core concepts that govern the behavior of electrical circuits. Resistors, capacitors, inductors, and other parts that make up complex circuits.

Electrical Components

3 Circuit Analysis

Understanding how current and voltage flow through different circuit configurations.

Ohm's Law: The Cornerstone of Electrical Circuits

The Equation

Ohm's Law states that the current (I) in a circuit is directly proportional to the voltage (V) and inversely proportional to the resistance (R).

Applications

Ohm's Law is used to calculate and predict the behavior of electrical circuits, making it a fundamental principle in electrical engineering.

Importance

Understanding Ohm's Law is crucial for designing, troubleshooting, and maintaining electrical systems and devices.

Series and Parallel Circuits: Analyzing Complex Setups

Series Circuits

Complex Circuits

Components are connected end-to-end, with the same current flowing through each element.

Combining series and parallel configurations to create intricate systems that power our devices and machinery.

3

Components are connected to the same two points, with each element having its own current path.

Electrical Power and Energy: Powering Our World

Power

The rate at which electrical energy is generated or consumed, measured in watts (W).

Energy

Efficiency

Maximizing the conversion of electrical energy to useful work, minimizing waste and losses.

Renewable Sources

Solar, wind, and hydroelectric power are transforming the way we generate and use electrieity.

The total amount of electrical energy used or produced, measured in watt-hours (Wh).

Electrical Safety: Protecting Ourselves and Our Devices

Shock Hazards

Proper grounding and insulation are essential to prevent electric shocks and electrocution.

Fire Risks

Overloaded circuits and faulty wiring can lead to electrical fires, requiring careful monitoring and maintenance.

Explosive Dangers

Certain environments, like fuel storage areas, require specialized equipment to prevent ignition and explosions.

Electrical Motors: Powering Machinery and Appliances

Induction Motors

Widely used in industrial applications and household appliances due to their efficiency and durability.

DC Motors

2

3

Provide precise speed and torque control, making them ideal for robotics, automotive, and aerospace applications.

Stepper Motors

Offer precise positioning and speed control, common in CNC machines, 3D printers, and other high-precision devices.

Transformers: Stepping Up and Down Voltages

Step-Up Transformer	Increases vo current, use distance pov
Step-Down Transformer	Decreases ve current, use household a electronics.
Isolation Transformer	Separates el providing sa against elect

oltage, reduces ed for efficient longower transmission.

voltage, increases ed to power appliances and

electrical circuits, afety and protection etrical shocks.

Residential Wiring: Powering Our Homes Safely

Main Service

The entry point where electricity enters a home, typically from overhead power lines or underground cables.

Circuits and Breakers

Distribute and protect electrical circuits throughout the home, ensuring safe and reliable power.

Grounding System

Helps dissipate electrical charges and prevent shocks, a critical safety feature in every home.

Electrical Grounding and Earthing: Ensuring Proper Connections

Purpose of Grounding

Provides a safe path for excess electrical current to flow to the earth, preventing shocks and fires. 2

ground.

Importance in Safety

Proper grounding is a crucial safety measure in electrical systems, protecting people and equipment.

Grounding Methods

Can be achieved through copper rods, metal water, pipes, or other conductive materials buried in the

References

- 1. T. L. Skvarenina, *Electrical Power and Controls*, 2nd ed. New York, NY, USA: McGraw-Hill, 2002.
- 2. J. D. Glover, M. S. Sarma, and T. J. Overbye, *Power System Analysis and Design*, 5th ed. Stamford, CT, USA: Cengage Learning, 2012.
- 3. T. L. Floyd, *Principles of Electric Circuits: Conventional Current Version*, 9th ed. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2013.
- 4. "Active Power, Reactive Power, Apparent Power and the Role of Power Factor," <u>*Control.com*</u>, [Online]. Available: https://control.com/technical-articles/active-power-reactive-power-apparent-power-and-the-role-of-power-factor/. [Accessed: Nov. 6, 2024].
- 5. "AC and DC Power," *Matsusada Precision Inc.*, [Online]. Available: <u>https://www.matsusada.com/column/dc_and_ac.html</u>. [Accessed: Nov. 6, 2024].
- 6. D. Darling, "AC Circuits," *<u>DavidDarling.info</u>*, [Online]. Available: http://www.daviddarling.info/encyclopedia/A/AC_circuits.html. [Accessed: Nov. 6, 2024].