ELC5693-GENERAL COMMUNICATION THEORY 6B07112 Electronic and Electrical Engineering

Efficient Coding. Huffman and Shannon-Fano Methods

Dosbayev Zhandos Makhsutuly, senior lecturer E-mail: <u>zh.dosbayev@satbayev</u>.university

Outline

Efficient Coding Huffman coding Shennon Fano coding

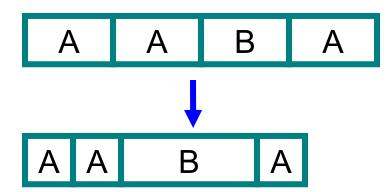
Huffman Code

Approach

- Variable length encoding of symbols
- Exploit statistical frequency of symbols
- Efficient when symbol probabilities vary widely

Principle

- Use fewer bits to represent frequent symbols
- Use more bits to represent infrequent symbols



Huffman Code Example

Symbol	Α	В	С	D	
Frequency	13%	25%	50%	12%	
Original	00	01	10	11	
Encoding	2 bits	2 bits	2 bits	2 bits	
Huffman	110	10	0	111	
Encoding	3 bits	2 bits	1 bit	3 bits	

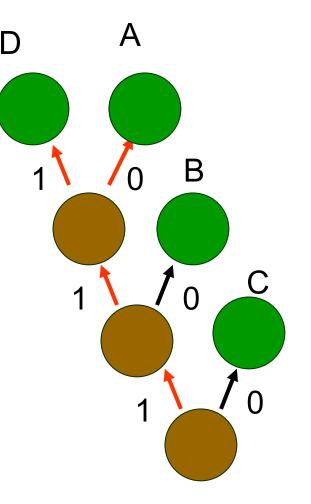
Expected size

• Original $\Rightarrow 1/8 \times 2 + 1/4 \times 2 + 1/2 \times 2 + 1/8 \times 2 = 2$ bits / symbol

■ Huffman \Rightarrow 1/8×3 + 1/4×2 + 1/2×1 + 1/8×3 = 1.75 bits / symbol

Huffman Code Data Structures

Binary (Huffman) tree Represents Huffman code Edge \Rightarrow code (0 or 1) • Leaf \Rightarrow symbol \blacksquare Path to leaf \Rightarrow encoding Example ■A = "110", B = "10", C = "0" Priority queue To efficiently build binary tree



Huffman Code Algorithm Overview

Encoding

Calculate frequency of symbols in file

Create binary tree representing "best" encoding

- Use binary tree to encode compressed file
 - For each symbol, output path from root to leaf
 - Size of encoding = length of path
- Save binary tree

Huffman Code – Creating Tree

Algorithm

Place each symbol in leaf

Weight of leaf = symbol frequency

Select two trees L and R (initially leafs)

Such that L, R have lowest frequencies in tree

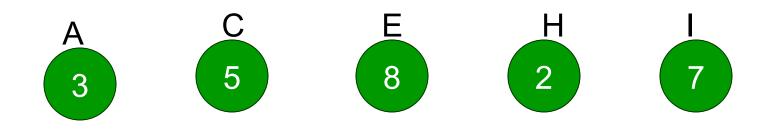
Create new (internal) node

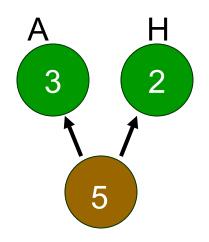
• Left child \Rightarrow L

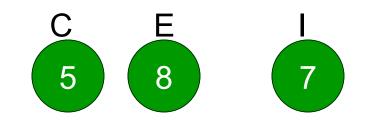
Right child \Rightarrow **R**

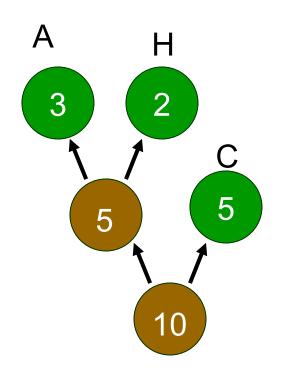
New frequency \Rightarrow frequency(L) + frequency(R)

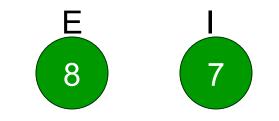
Repeat until all nodes merged into one tree

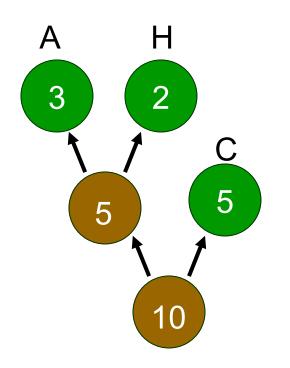


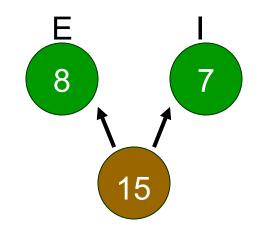


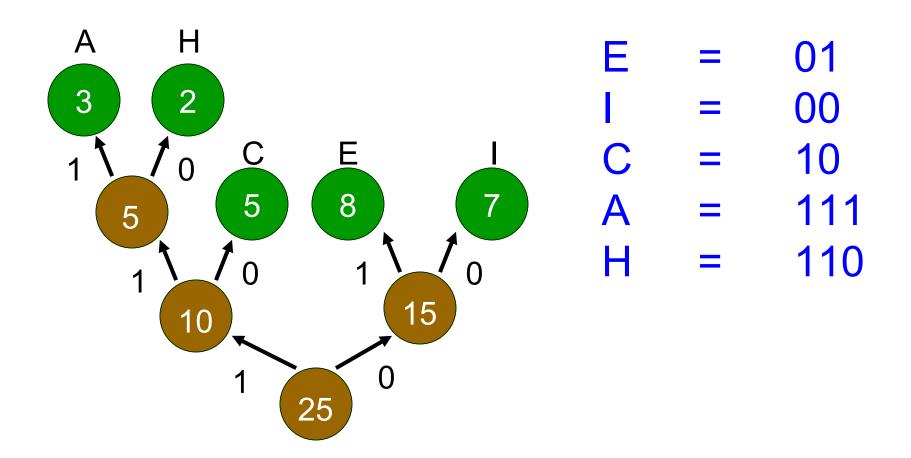




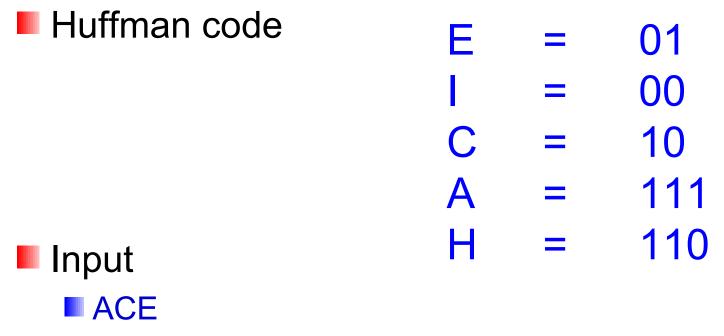








Huffman Coding Example



Output
(111)(10)(01) = 1111001

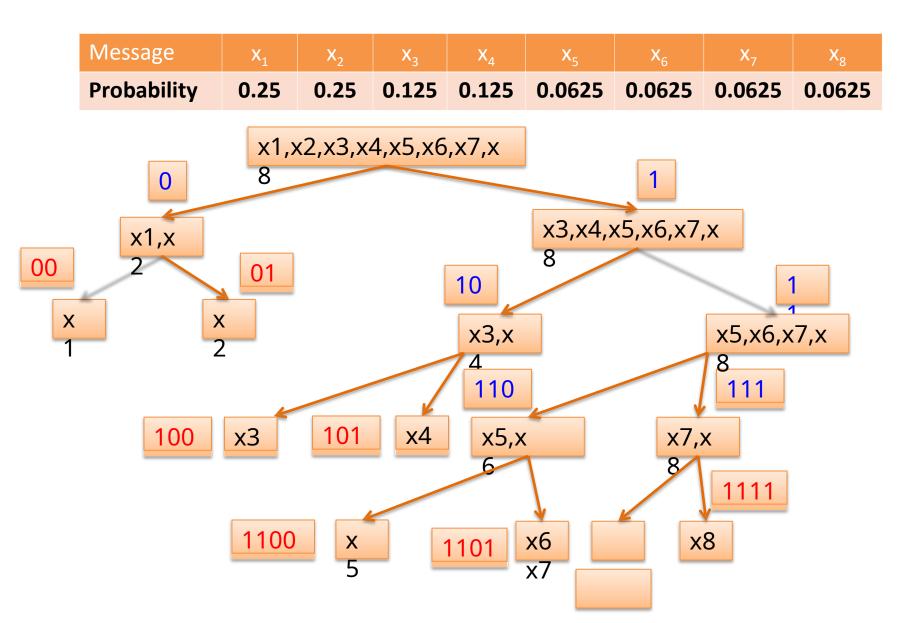
Shannon-Fano Coding

- An efficient code can be obtained by the following simple algorithm as steps given below:
- Shannon-Fano Algorithm
 - The letters (messages) of (over) the input alphabet must be arranged in order from most probable to least probable.
 - Then the initial set of messages must be divided into two subsets whose total probabilities are as close as possible to being equal.

Shannon-Fano Coding

- All symbols then have the first digits of their codes assigned; symbols in the first set receive "0" and symbols in the second set receive "1".
- The same process is repeated on those subsets, to determine successive digits of their codes, as long as any sets with more than one member remain.
- When a subset has been reduced to one symbol, this means the symbol's code is complete.

Shannon-Fano Coding: Example



Shannon-Fano Coding: Example

Message	X ₁	x ₂	X ₃	X ₄	X 5	× ₆	x ₇	X ₈
Probability	0.25	0.25	0.125	0.125	0.0625	0.0625	0.0625	0.0625
Encoding vector	00	01	100	101	1100	1101	1110	1111

- Entropy $H = -\left(2 \cdot \left(1 \log_{4} 1\right) + 2 \cdot \left(1 \log_{8} 1\right) + 4 \cdot \left(1 \log_{1} 1\right) + 4 \cdot \left(1$
- Average length of the encoding vector

$$L = \sum_{i=1}^{n} P\{x^{i}\}n_{i} = \left(\left|2\cdot\left(\left|\frac{1}{4}\cdot 2\right)\right| + 2\left(\left|\frac{1}{8}\cdot 3\right|\right) + 4\left|\left(\left|\frac{1}{16}\cdot 4\right|\right)\right|\right)\right) =$$

The Shannon-Fano code gives 100% efficiency

Shannon-Fano Encoding: Example

Message	X ₁	x ₂	X 3	X ₄	X 5	x ₆	X ₇	X 8
Probability	0.25	0.25	0.125	0.125	0.0625	0.0625	0.0625	0.0625
Encoding vector	00	01	100	101	1100	1101	1110	1111

The Snannon-Fano code gives 100% emciency. Since the average length of the encoding vector for this code is 2.75 bits, it gives the 0.25 bits/symbol compression, while the direct uniform binary encoding (3 bits/symbol) is redundant.

Shannon-Fano Encoding: Properties

- It should be taken into account that the Shannon-Fano code is not unique because it depends on the partitioning of the input set of messages, which, in turn, is not unique.
- If the successive equiprobable partitioning is not possible at all, the Shannon-Fano code may not be an optimum code, that is, a code that leads to the lowest possible average length of the encoding vector.