
Efficient Coding. Huffman and Shannon-
Fano Methods

Dosbayev Zhandos Makhsutuly, senior lecturer
 E-mail: zh.dosbayev@satbayev.university

ELC5693-GENERAL COMMUNICATION THEORY

6B07112 Electronic and Electrical Engineering

mailto:zh.dosbayev@satbayev

Outline

Efficient Coding
Huffman coding
Shennon Fano coding

Huffman Code

Approach
Variable length encoding of symbols
Exploit statistical frequency of symbols
Efficient when symbol probabilities vary widely

Principle
Use fewer bits to represent frequent symbols
Use more bits to represent infrequent symbols

A A B A

A AA B

Huffman Code Example

Expected size
Original  1/82 + 1/42 + 1/22 + 1/82 = 2 bits / symbol
Huffman  1/83 + 1/42 + 1/21 + 1/83 = 1.75 bits / symbol

Symbol A B C D
Frequency 13% 25% 50% 12%

Original
Encoding

00 01 10 11
2 bits 2 bits 2 bits 2 bits

Huffman
Encoding

110 10 0 111
3 bits 2 bits 1 bit 3 bits

Huffman Code Data Structures

Binary (Huffman) tree
Represents Huffman code
Edge  code (0 or 1)
Leaf  symbol
Path to leaf  encoding
Example

A = “110”, B = “10”, C = “0”

Priority queue
To efficiently build binary tree 1

1 0

0

D

C

B

A

01

Huffman Code Algorithm Overview

Encoding
Calculate frequency of symbols in file
Create binary tree representing “best” encoding
Use binary tree to encode compressed file

For each symbol, output path from root to leaf
Size of encoding = length of path

Save binary tree

Huffman Code – Creating Tree

Algorithm
Place each symbol in leaf

Weight of leaf = symbol frequency
Select two trees L and R (initially leafs)

Such that L, R have lowest frequencies in tree
Create new (internal) node

Left child  L
Right child  R
New frequency  frequency(L) + frequency(R)

Repeat until all nodes merged into one tree

Huffman Tree Construction 1

3 5 8 2 7
A C E H I

Huffman Tree Construction 2

3 5 82 7

5

A C EH I

Huffman Tree Construction 3

3

5

8
2

7

5

10

A

C

EH I

Huffman Tree Construction 4

3

5

8
2

7

5

10

15

A

C

EH I

Huffman Tree Construction 5

3

5 8

2

75

10 15

25
1

1

1

1

0

0

0

0

A

C E

H

I

E = 01
I = 00
C = 10
A = 111
H = 110

Huffman Coding Example

Huffman code

Input
ACE

Output
(111)(10)(01) = 1111001

E = 01
I = 00
C = 10
A = 111
H = 110

Shannon-Fano Coding

• An efficient code can be obtained by the following
simple algorithm as steps given below:

• Shannon-Fano Algorithm
• The letters (messages) of (over) the input alphabet

 must be arranged in order from most probable to
least probable.

• Then the initial set of messages must be divided
into two subsets whose total probabilities are as
close as possible to being equal.

Shannon-Fano Coding

• All symbols then have the first digits of their codes
assigned; symbols in the first set receive "0" and
symbols in the second set receive "1".

• The same process is repeated on those subsets, to
determine successive digits of their codes, as long as
any sets with more than one member remain.

• When a subset has been reduced to one symbol, this
means the symbol's code is complete.

Shannon-Fano Coding: Example
Message x1 x2 x3 x4 x5 x6 x7 x8

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

x1,x2,x3,x4,x5,x6,x7,x
80

x1,x
2

x3,x4,x5,x6,x7,x
8

x
1

x
2

0100 10

1

1
1

x5,x
6

x7,x
8

1100 x
5

x6
x7

x8

111

1101

x3,x
4

x5,x6,x7,x
8

100 101

110

x3 x4

1111

Shannon-Fano Coding: Example

• Average length of the encoding
vector

• The Shannon-Fano code gives 100%
efficiency

Message x1 x2 x3 x4 x5 x6 x7 X8

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding
vector

00 01 100 101 1100 1101 1110 1111

• Entropy H   2  1 log 1   2  1 log 1   4  1 log 1  
2.75

  4 4   8 8   16 16      

i
 16i   4   8        

L   Px n  2  1  2   2  1  3  4  1  4  
2.75

Shannon-Fano Encoding: Example

• The Shannon-Fano code gives 100% efficiency. Since
the average length of the encoding vector for this
code is 2.75 bits, it gives the 0.25 bits/symbol
compression, while the direct uniform binary
encoding (3 bits/symbol) is redundant.

Message x1 x2 x3 x4 x5 x6 x7 x8

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding
vector

00 01 100 101 1100 1101 1110 1111

Shannon-Fano Encoding:
Properties

• It should be taken into account that the Shannon-
Fano code is not unique because it depends on the
partitioning of the input set of messages, which, in
turn, is not unique.

• If the successive equiprobable partitioning is not
possible at all, the Shannon-Fano code may not be an
 optimum code, that is, a code that leads to the
lowest possible average length of the encoding
vector.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

