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Huffman Code

Approach
Variable length encoding of symbols
Exploit statistical frequency of symbols
Efficient when symbol probabilities vary widely

Principle
Use fewer bits to represent frequent symbols 
Use more bits to represent infrequent symbols 
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Huffman Code Example

Expected size
Original   1/82 + 1/42 + 1/22 + 1/82 = 2 bits / symbol
Huffman  1/83 + 1/42 + 1/21 + 1/83 = 1.75 bits / symbol

Symbol A B C D
Frequency 13% 25% 50% 12%

Original 
Encoding

00 01 10 11
2 bits 2 bits 2 bits 2 bits

Huffman 
Encoding

110 10 0 111
3 bits 2 bits 1 bit 3 bits



Huffman Code Data Structures

Binary (Huffman) tree
Represents Huffman code
Edge  code (0 or 1)
Leaf  symbol
Path to leaf  encoding
Example

A = “110”, B = “10”, C = “0”

Priority queue
To efficiently build binary tree 1
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Huffman Code Algorithm Overview

Encoding
Calculate frequency of symbols in file
Create binary tree representing “best” encoding 
Use binary tree to encode compressed file

For each symbol, output path from root to leaf
Size of encoding = length of path

Save binary tree



Huffman Code – Creating Tree

Algorithm
Place each symbol in leaf

Weight of leaf = symbol frequency
Select two trees L and R (initially leafs) 

Such that L, R have lowest frequencies in tree
Create new (internal) node 

Left child  L
Right child  R
New frequency  frequency( L ) + frequency( R )

Repeat until all nodes merged into one tree



Huffman Tree Construction 1

3 5 8 2 7
A C E H I



Huffman Tree Construction 2
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Huffman Tree Construction 3
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Huffman Tree Construction 4
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Huffman Tree Construction 5
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E  = 01
I = 00
C = 10
A = 111
H = 110



Huffman Coding Example

Huffman code

Input
ACE

Output
(111)(10)(01) = 1111001

E  = 01
I = 00
C = 10
A = 111
H = 110



Shannon-Fano Coding

• An efficient code can be obtained by the following  
simple algorithm as steps given below:

• Shannon-Fano Algorithm
• The letters (messages) of (over) the input alphabet 

 must be arranged in order from most probable to  
least probable.

• Then the initial set of messages must be divided  
into two subsets whose total probabilities are as  
close as possible to being equal.



Shannon-Fano Coding

• All symbols then have the first digits of their codes  
assigned; symbols in the first set receive "0" and  
symbols in the second set receive "1".

• The same process is repeated on those subsets, to  
determine successive digits of their codes, as long as  
any sets with more than one member remain.

• When a subset has been reduced to one symbol, this  
means the symbol's code is complete.



Shannon-Fano Coding: Example
Message x1 x2 x3 x4 x5 x6 x7 x8

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

x1,x2,x3,x4,x5,x6,x7,x
80

x1,x
2

x3,x4,x5,x6,x7,x
8

x
1

x
2

0100 10
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8

1100 x
5

x6
x7

x8

111

1101

x3,x
4
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8

100 101

110

x3 x4

1111



Shannon-Fano Coding: Example

• Average length of the encoding 
vector

• The Shannon-Fano code gives 100% 
efficiency

Message x1 x2 x3 x4 x5 x6 x7 X8

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding  
vector

00 01 100 101 1100 1101 1110 1111

• Entropy H   2  1 log 1   2  1 log 1   4   1  log  1    
2.75

  4 4   8 8   16 16      

i
 16i   4   8        

L   Px n  2  1  2   2  1  3  4   1   4   
2.75



Shannon-Fano Encoding: Example

• The Shannon-Fano code gives 100% efficiency. Since  
the average length of the encoding vector for this  
code is 2.75 bits, it gives the 0.25 bits/symbol  
compression, while the direct uniform binary  
encoding (3 bits/symbol) is redundant.

Message x1 x2 x3 x4 x5 x6 x7 x8

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding  
vector

00 01 100 101 1100 1101 1110 1111



Shannon-Fano Encoding: 
Properties

• It should be taken into account that the Shannon-  
Fano code is not unique because it depends on the  
partitioning of the input set of messages, which, in  
turn, is not unique.

• If the successive equiprobable partitioning is not  
possible at all, the Shannon-Fano code may not be an 
 optimum code, that is, a code that leads to the  
lowest possible average length of the encoding  
vector.
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