ELC5693-GENERAL COMMUNICATION THEORY COTBAEB @ SATBAYEV
6B07112 Electronic and Electrical Engineering YHVBEPCHITETI UNIVERSITY

Efficient Coding. Huffman and Shannon-
Fano Methods

Dosbayev Zhandos Makhsutuly, senior lecturer
E-mail: .university

mailto:zh.dosbayev@satbayev

Outline

Efficient Coding
Huffman coding
Shennon Fano coding

Huffman Code

F Approach
B Variable length encoding of symbols
B Exploit statistical frequency of symbols
B Efficient when symbol probabilities vary widely
E Principle
B Use fewer bits to represent frequent symbols
B Use more bits to represent infrequent symbols

AlAalB]|A

|
AlAl B |A

Huffman Code Example

Symbol A B C D
Frequency 13% | 25% | 30% | 12%
Original 00 01 10 11

Encoding 5 e 2 bits | 2 bits | 2 bits
Huffman 110 10 0 111
Encoding ' 3phits 2bits 1 bit 3 bits

F Expected size
B Original = 1/8x2 + 1/4x2 + 1/2x2 + 1/8x2 = 2 bits / symbol
E Huffman = 1/8x3 + 1/4x2 + 1/2x1 + 1/8x3 = 1.75 bits / symbol

Huffman Code Data Structures

E Binary (Huffman) tree

D A
B Represents Huffman code
E Edge = code (0O or 1) ‘ ’
B Leaf = symbol 1\‘0 5

B Path to leaf = encoding

B Example
X pu ” 14 b 1Tt} 1\ fo C
BA=“110",B=“10",C =0 ‘
E Priority queue
Yq 1\ fo

B To efficiently build binary tree

Huffman Code Algorithm Overview

F Encoding
B Calculate frequency of symbols in file
B Create binary tree representing “best” encoding
B Use binary tree to encode compressed file
BFor each symbol, output path from root to leaf
BSize of encoding = length of path
B Save binary tree

Huffman Code — Creating Tree

E Algorithm
B Place each symbol in leaf

H\Veight of leaf = symbol frequency
B Select two trees L and R (initially leafs)

BSuch that L, R have lowest frequencies in tree
B Create new (internal) node

Bl eft child = L

BRight child = R

BNew frequency = frequency(L) + frequency(R)
E Repeat until all nodes merged into one tree

Huffman Tree Construction 1

Huffman Tree Construction 2

Huffman Tree Construction 3

\

Huffman Tree Construction 4

A H = |
oo 09
O

Huffman Tree Construction 5

A H 01
ea 00
1\ /o 10

600 o
oo
X%

111
110

>0 m

Huffman Coding Example

F Huffman code

E = 01
| = 00
C = 10
A = 111
F Input H = 110
E ACE

E Output
E (111)(10)(01) = 1111001

Shannon-Fano Coding

* An efficient code can be obtained by the following
simple algorithm as steps given below:

* Shannon-Fano Algorithm
* The letters (messages) of (over) the input alphabet
must be arranged in order from most probable to
least probable.
* Then the initial set of messages must be divided

into two subsets whose total probabilities are as
close as possible to being equal.

Shannon-Fano Coding

* All symbols then have the first digits of their codes
assigned; symbols in the first set receive "0" and
symbols in the second set receive "1".

* The same process is repeated on those subsets, to
determine successive digits of their codes, as long as
any sets with more than one member remain.

* When a subset has been reduced to one symbol, this
means the symbol's code is complete.

Shannon-Fano Coding: Example

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

X1,x2,%3,x4,x5,x6,x7,X

X1,x X3,%X4,X5,X6,X7,X

g
A < 01 ~. |

x5,x6,x7,x

144

100 | | x3

1100

X

1101 || X6 X8
X/

Ul

Shannon-Fano Coding: Example

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding 00 01 100 101 1100 1101 1110 1111
vector

* Entro H (1 log + 1 log + 1\\
2.75 o T (‘% Y i ﬂl6 16))
* Average length of the encoding
vector
L= ZP{x}n —(2\4)+2(8 3}+4k ﬁm

. The7§hannon-Fano code gives 100%
efficiency

Shannon-Fano Encoding: Example

Probability 0.25 0.25 0.125 0.125 0.0625 0.0625 0.0625 0.0625

Encoding 00 01 100 101 1100 1101 1110 1111
_vector

INe >nannon-rano code gIves LUUY eTTiciency. >Ince
the average length of the encoding vector for this
code is 2.75 bits, it gives the 0.25 bits/symbol

compression, while the direct uniform binary

encoding (3 bits/symbol) is redundant.

Shannon-Fano Encoding:
Properties

* |t should be taken into account that the Shannon-
Fano code is not unique because it depends on the
partitioning of the input set of messages, which, in
turn, is not unique.

* If the successive equiprobable partitioning is not
possible at all, the Shannon-Fano code may not be an
optimum code, that is, a code that leads to the
lowest possible average length of the encoding
vector.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

