

Киберқауіпсіздік архитектурасы

және

құпия

есептеулер

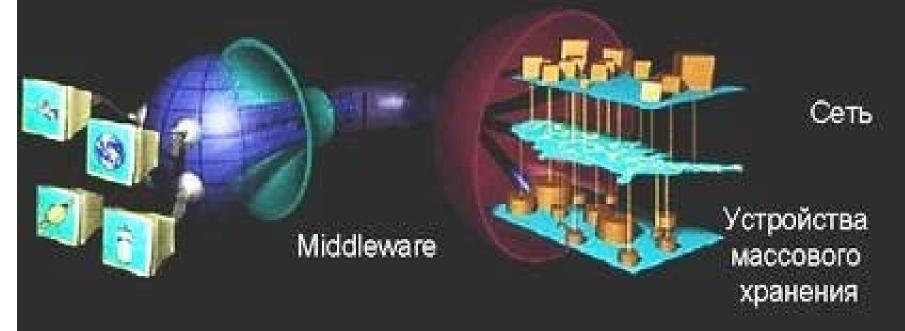
Оқытушы: Жекамбаева М.Н. «Программалық Инженерия» кафедрасының профессоры m.zhekambayeva@satbayev.university

GRID – технологиялар

Рассматриваемую тему можно обозначить как использование компьютерных сетей для создания распределенной вычислительной инфраструктуры национального и мирового масштаба. На сегодня сети доказали беспрецедентную практическую полезность, выступая как средство глобальной доставки различных форм информации.

Общее представление о GRID-технологии

Общее представление о GRID-технологии


Internet представляет собой множество узлов с собственными процессорами, оперативной и внешней памятью, устройствами ввода/вывода. Узлы соединены друг с другом коммутационным оборудованием и линиями передачи данных. Такая конструкция весьма напоминает многопроцессорную систему, в которой роль магистральных шин выполняет Сеть.

Участники GRID-вычислений

Умный интерфейс Cluster Operating System

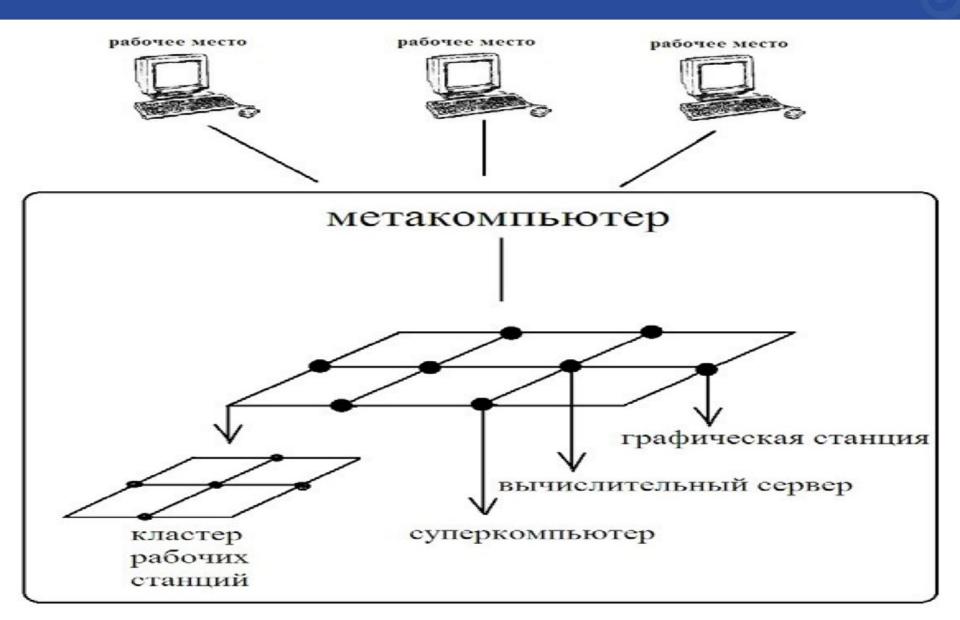
Пользователи

Суперкомпьютер

Участники GRID-вычислений

Цель заключается в том, чтобы превратить аналогии в реальность, то есть стереть барьеры между разнородными, пространственно распределенными вычислительными системами, образовав сверхкомпьютер или метакомпьютер, который для пользователей и программистов выступал бы как единая вычислительная среда, доступная непосредственно с рабочего места (ПК или рабочей станции).

Метакомпьютер


Центральное понятие метакомпьютера можно определить, как метафору виртуального компьютера, динамически организующегося из географически ресурсов, соединенных распределенных высокоскоростными сетями передачи данных. Необходимо подчеркнуть принципиальную разницу метакомпьютерного подхода и сегодняшних программных средств удаленного доступа. метакомпьютере этот доступ прозрачен, то есть пользователь имеет полную иллюзию использования одной, но гораздо более мощной, чем та, что стоит на его столе, машины и может с ней работать в рамках той же модели, которая принята на его персональном вычислителе.

Зачем вообще может быть нужна такая среда?

Непосредственные потребности исходят от высокопроизводительных приложений. В различных прикладных областях (космологии, гидрологии окружающей среды, молекулярной биологии и т.д.) поставлены весьма важные задачи, характеризующиеся, например, следующими требованиями к компьютерным ресурсам:

- 0.2 20 Tflops процессорной мощности;
- 100 200 GB оперативной памяти;
- 1—2 ТВ дисковой памяти;
- 0.2 0.5 GB/sec ширина полосы пропускания ввода/вывода.

Типы узлов метакомпьютера

Типы узлов метакомпьютера

Нижняя граница таких запросов — это уникальные архитектуры типа SGI/CRAY Origin с тысячами процессоров. С другой стороны, суммарный объем ресурсов в достаточно большом фрагменте Сети далеко превосходит эти цифры, вопрос в том, как эти ресурсы объединить и дать в руки реальному потребителю.

В результате суперкомпьютерные мощности стали доступны практически всем заинтересованным исследователям, произошла быстрая эволюция архитектур: от векторных систем (PVP) к машинам с массовым параллелизмом (MPP) и далее к машинам с симметричным мультипроцессированием на базе разделяемой памяти (SMP).

Концепция GRID – технологии

Новая интернет-технология, получившая название GRID-computing (дословно решеточные считается большинством вычисления), исследователей следующим шагом \mathbf{B} Интернета. Концепцию GRID-технологии можно как концепцию глобальной рассматривать инфраструктуры, интегрирующей мировые компьютерные ресурсы для реализации крупномасштабных информационно-вычислительных проектов.

Концепция GRID – технологии

Термин "GRID" был предложен Яном Фостером (Ian Foster) и Карлом Кессельманом (Karl Kesselman), создателями первой книжки об идее использования компьютерных сетей для решения задач, требующих огромных вычислительных ресурсов, и разъясняется некой аналогией с электрическими сетями (Power Grid). Power Grid электропитания, распределенный ресурс общего использования, построенная таким образом, что каждый может просто подключиться через розетку и взять электричества, сколько ему требуется, не задумываясь о том, откуда это электричество "пришло".

Концепция GRID – технологии

GRID – географически распределенная инфраструктура, объединяющая множество ресурсов разных типов (процессоры, долговременная и оперативная память, хранилища и базы данных, сети), доступ к которым пользователь может получить из любой точки, независимо от места их расположения. GRID предполагает коллективный разделяемый режим доступа к ресурсам и к связанным с ними услугам в рамках глобально распределенных виртуальных организаций, состоящих из предприятий и отдельных специалистов, совместно использующих общие ресурсы. В каждой виртуальной организации имеется своя собственная политика поведения ее участников, которые должны соблюдать установленные правида. Виртуальная

Рассмотрим области применения GRID:

Изначально GRID - технологии предназначались для решения сложных научных, производственных и инженерных задач, которые невозможно решить в разумные сроки на отдельных вычислительных установках. Однако теперь область применения технологий GRID не ограничивается только этими типами задач. По мере своего развития GRID проникает в промышленность и бизнес, крупные предприятия создают GRID для решения собственных производственных задач. Таким образом, GRID претендует на роль универсальной инфраструктуры обработки данных, в которой функционирует множество служб (Grid Services), которые позволяют решать не только конкретные прикладные задачи, но и предлагают сервисные услуги: поиск необходимых ресурсов, сбор информации о состоянии ресурсов, хранение и доставка данных.

Применение GRID может дать новое качество решения следующих классов задач:

- массовая обработка потоков данных большого объема;
- многопараметрический анализ данных;
- моделирование на удаленных суперкомпьютерах;
- реалистичная визуализация больших наборов данных;
- сложные бизнес-приложения с большими объемами вычислений.

Понятие метакомпьютинга

«метакомпьютинг» возник вместе с развитием высокоскоростной сетевой инфраструктуры в начале 90-х годов и относился к объединению нескольких разнородных вычислительных ресурсов в локальной сети организации для решения одной задачи. Основная цель построения метакомпьютера в то время заключалась в оптимальном распределении частей работы по вычислительным системам различной архитектуры и различной мощности. Например, предварительная обработка данных и генерация сеток для счета могли производится на пользовательской рабочей станции, основное моделирование на векторно-конвейерном суперкомпьютере, решение больших систем линейных уравнений – на массивно-параллельной системе, визуализация результатов – на специальной графической станции.

Понятие метакомпьютинга

Понятие метакомпьютера можно определить, как метафору виртуального компьютера, динамически организующегося из географически распределенных ресурсов, соединенных высокоскоростными сетями передачи данных. Отдельные установки являются составными частями метакомпьютера и в то же время служат точками подключения пользователей.

•Распространение метакомпьютерных технологий может произойти только при гармоничном сочетании двух направлений: развития технической базы и создания программного обеспечения нового поколения.

Формы метакомпьютера

Понятие метакомпьютера можно определить, как метафору виртуального компьютера, динамически организующегося из географически распределенных ресурсов, соединенных высокоскоростными сетями передачи данных. Отдельные установки являются составными частями метакомпьютера и в то же время служат точками подключения пользователей.

•Распространение метакомпьютерных технологий может произойти только при гармоничном сочетании двух направлений: развития технической базы и создания программного обеспечения нового поколения.

Облачные вычисления

Облачные вычисления (англ. cloud computing), в – это модель обеспечения информатике повсеместного и удобного сетевого доступа по требованию к общему пулу (англ. *pool*) конфигурируемых вычислительных ресурсов (например, сетям передачи данных, серверам, устройствам хранения данных, приложениям и сервисам— как вместе, так и по отдельности), которые могут быть оперативно предоставлены и освобождены с минимальными эксплуатационными затратами и/или обращениями к провайдеру.

Облачные вычисления

Достоинства облачных вычислений:

- отказоустойчивость;
- безопасность;
- высокая скорость обработки данных;
- снижение затрат на аппаратное и программное обеспечение, на обслуживание и электроэнергию;
- экономия дискового пространства (и дан**и**ые, программы хранятся в интернете).

Облачные вычисления

Недостатки облачных вычислений:

- зависимость сохранности пользовательских данных от компаний, предоставляющих услугу cloud computing;
- появление новых («облачных») монополистов.