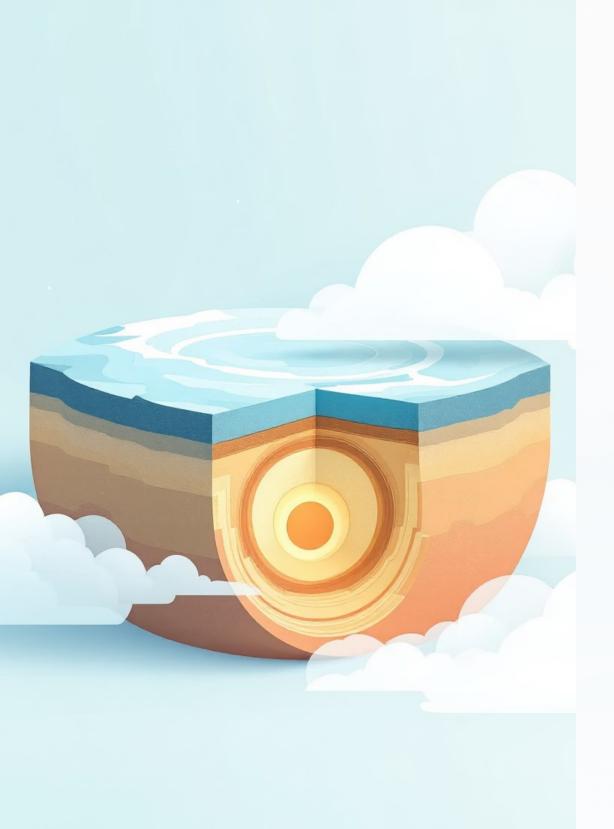
НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И.САТПАЕВА»

Институт геологии и нефтегазового дела им. К. Турысова Кафедра «Геофизика и сейсмология»


GPH1662 – «Введение в сейсмологию»

6B07201 — «Нефтегазовая и рудная геофизика»

Лекция-2

На тему «Внутреннее строение Земли: кора, мантия, ядро. »

Преподаватель: *Ратов Боранбай Товбасарович* – доктор технических наук, профессор

Внутреннее строение Земли: Путешествие в глубины

Наше понимание планеты простирается далеко за пределы того, что мы видим на поверхности. Это презентация — приглашение совершить захватывающее путешествие в недра Земли, чтобы исследовать её скрытые слои: кору, мантию и ядро.

Зачем изучать недра Земли? Актуальность и значение

Понимание внутреннего строения Земли имеет решающее значение не только для геологии, но и для всей нашей жизни.

Прогнозирование природных катастроф

Знания о слоях и процессах внутри Земли позволяют лучше прогнозировать землетрясения, извержения вулканов и цунами.

Изучение магнитного поля

Жидкое внешнее ядро генерирует магнитное поле, которое защищает нас от космической радиации и солнечного ветра.

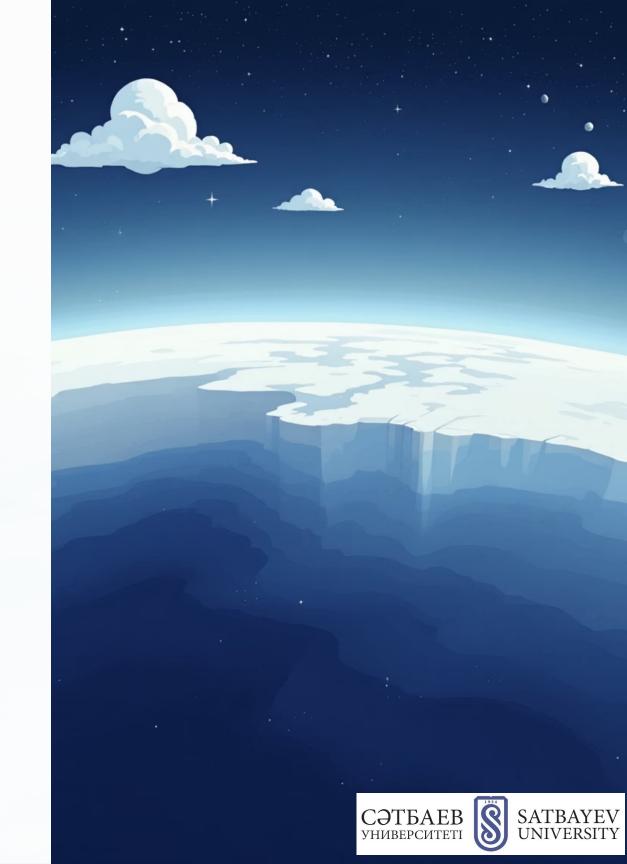
Поиск ресурсов

Понимание геологических процессов помогает в эффективном поиске и добыче полезных ископаемых и геотермальной энергии.

Земная кора: Тонкая оболочка жизни

- Самый верхний и самый тонкий слой Земли, где сосредоточена вся известная нам жизнь.
- Её толщина варьируется: Океаническая кора составляет всего 5-10 км и в основном состоит из базальта.
- **Континентальная кора** может достигать 30-70 км и включает более легкие породы, такие как гранит.
- Кора раздроблена на тектонические плиты, движение которых вызывает землетрясения и горообразование.

0.5%


От общей массы

Доля коры в общей массе Земли.

1000°C

Температура

Примерная температура на границе с мантией (Мохоровичича).

Мантия: Динамичное сердце планеты

Мантия — самый большой слой Земли, составляющий около 84% её объёма. Несмотря на то, что мантия твердая, она ведет себя как вязкая жидкость в течение геологического времени, что обуславливает тектонику плит.

Конвективные потоки

Горячий материал поднимается, а холодный опускается, создавая движение, которое толкает литосферные плиты.

Источник магмы

Расплавленные участки в верхней мантии (астеносфера) служат источником для вулканической активности.

Высокое давление

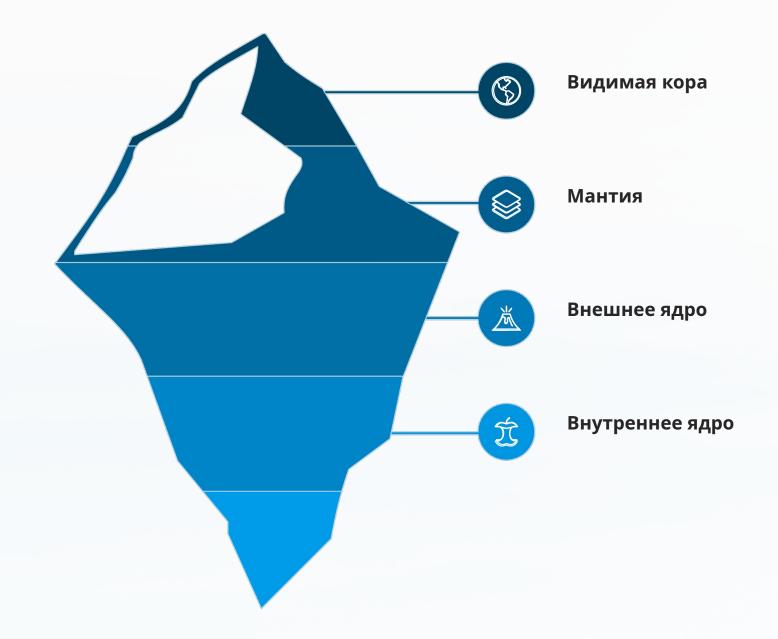
Давление увеличивается до 140 ГПа на границе с ядром, трансформируя минералы в более плотные структуры.

Внешнее ядро: Жидкий океан железа

Внешнее ядро, толщиной около 2200 км, состоит в основном из расплавленного железа и никеля. Это единственная жидкая часть внутри Земли.

Ключевая роль в защите планеты

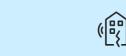
Движение (конвекция) этого электропроводящего жидкого металла вокруг твердого внутреннего ядра генерирует электрические токи. Этот процесс, известный как геодинамо, создает магнитное поле Земли (магнитосферу).


Температура: **4000°С - 5000°С**

• Состояние: Жидкое

Состав: Железо (Fe) и Никель (Ni)

Внутреннее ядро: Твердый центр гравитации



Внутреннее ядро — это шар с радиусом около 1220 км, который, несмотря на экстремальные температуры, остается **твердым** из-за колоссального давления.

Как мы изучаем недра Земли? Методы исследования

Прямое бурение не позволяет проникнуть дальше коры. Наше знание о мантии и ядре получено исключительно косвенными методами.

Сейсмология

Анализ скорости и преломления сейсмических волн (Р- и S-волн) при прохождении через Землю. Изменение скорости указывает на границы слоев.

Лабораторные эксперименты

Воспроизведение экстремальных температур и давлений недр Земли в алмазных наковальнях для изучения поведения материалов.

Геофизическое моделирование

Создание математических моделей, учитывающих теплопередачу, конвекцию и плотность для симуляции процессов внутри планеты.

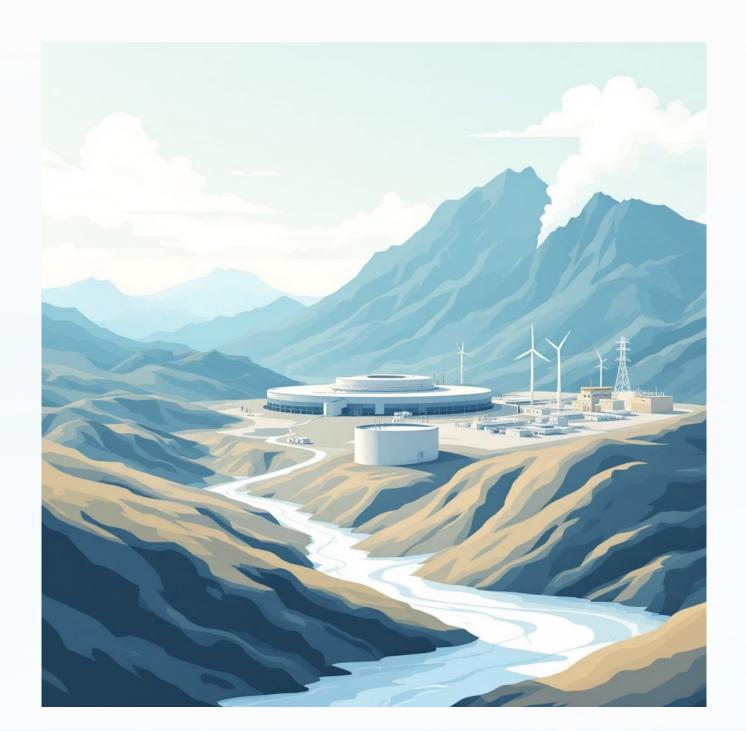
Влияние внутреннего строения на процессы на поверхности

Глубинные процессы формируют облик нашей планеты и контролируют её важнейшие системы.

Тектоника плит

Движение плит, вызванное конвекцией в мантии, определяет распределение континентов, формирует горы и океанские впадины.

Магма, поднимающаяся из верхней мантии, высвобождается через вулканы, влияя на состав атмосферы и формируя новые породы.


Защита от космоса

Геодинамо во внешнем ядре создает магнитное поле, которое отклоняет вредоносное солнечное и космическое излучение.

От теории к практике: Применение знаний о Земле

Геотермальная энергетика

Понимание теплового потока из мантии и ядра критически важно для использования геотермальной энергии. Эта возобновляемая энергия добывается путем использования естественного тепла Земли.

Инженерная геология

Знание структуры коры и её стабильности необходимо для проектирования крупных инфраструктурных объектов, таких как мосты, плотины и небоскребы, особенно в сейсмоопасных районах.

Вопросы и выводы: Ключевые аспекты и дальнейшие исследования

Недра Земли остаются последним великим неизведанным рубежом. Наши выводы подчеркивают взаимосвязь всех слоев.

Системная взаимосвязь

Все слои, от коры до ядра, функционируют как единая, динамичная система, управляющая поверхностными процессами.

Ядро и магнитное поле

Жидкое внешнее ядро и его конвекция — наш планетарный щит, защищающий атмосферу и жизнь.

Неизведанные глубины

Исследования продолжаются, фокусируясь на химическом составе и динамике самой нижней мантии и внутреннего ядра.

Задать вопросы

Свяжитесь с нами

