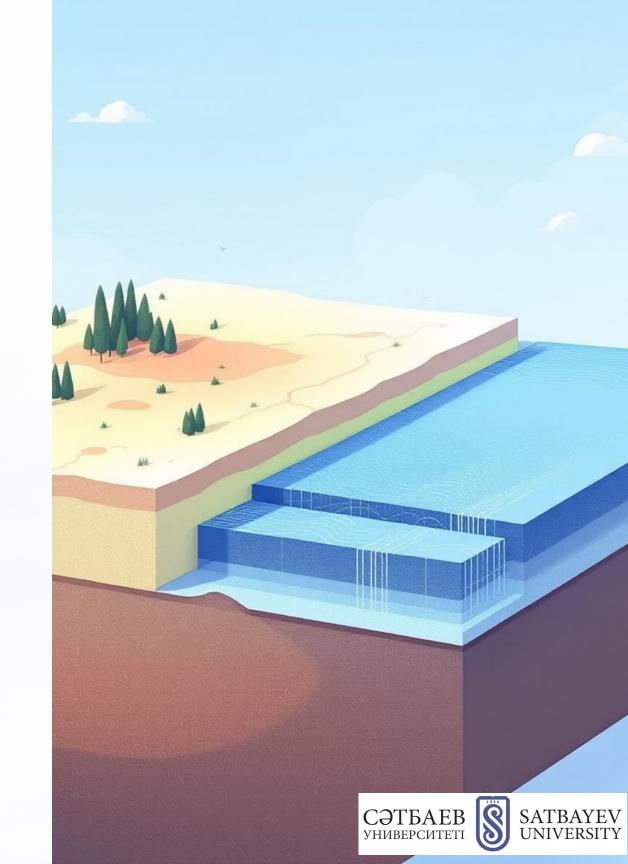
НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И.САТПАЕВА»

Институт геологии и нефтегазового дела им. К. Турысова Кафедра «Геофизика и сейсмология»

GPH1662 – «Введение в сейсмологию»

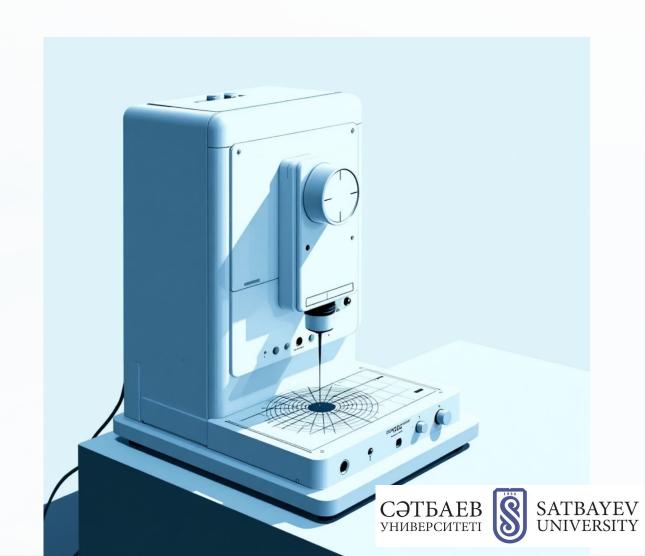
6B07201 — «Нефтегазовая и рудная геофизика»


Лекция-5

На тему «Сейсмологические модели и строение земной коры. »

Преподаватель: *Ратов Боранбай Товбасарович* – доктор технических наук, профессор

Сейсмологические модели и строение земной коры


Понимание внутреннего строения Земли через призму сейсмических данных.

Что такое сейсмология и почему это важно?

Сейсмология — это научное направление, изучающее землетрясения и распространение упругих волн в недрах Земли. Эти волны позволяют нам получать информацию о внутренней структуре планеты, которую невозможно увидеть напрямую.

- Изучение строения и состава земной коры, мантии и ядра.
- Мониторинг тектонических процессов и движения плит.
- Оценка сейсмической опасности и рисков.

Основные сейсмические волны и их свойства

Сейсмические волны являются нашим основным инструментом. Их скорость и пути прохождения зависят от плотности и упругости материалов, через которые они проходят.

Р-волны (Продольные)

Самые быстрые волны. Сжимают и растягивают материал в направлении распространения. Проходят через твердые породы и жидкости.

S-волны (Поперечные)

Медленнее Р-волн. Вызывают сдвиг материала перпендикулярно направлению распространения. **Не проходят через жидкости** (ключевой фактор для изучения ядра Земли).

Поверхностные волны

Самые медленные, но наиболее разрушительные. Распространяются вдоль поверхности Земли. Включают волны Лява и Рэлея.

Глава 2: Методы исследования

Методы сейсмической томографии: как мы "видим" внутрь Земли

Сейсмическая томография — это аналог медицинской томографии, но использующий сейсмические волны для создания 3D-изображений внутренней структуры планеты.

Сбор данных

Регистрация времени прихода сейсмических волн (как от естественных землетрясений, так и от искусственных источников) на множестве станций.

Инверсия данных

Математическая обработка для расчета аномалий скорости волн. Чем быстрее волна, тем плотнее и холоднее материал; чем медленнее — тем горячее и менее плотное.

Визуализация моделей

Создание детализированных 3Dмоделей распределения скоростей, которые интерпретируются как границы между слоями и неоднородности внутри них.



Именно томография позволила подтвердить наличие **плюмов мантии** (восходящих потоков горячего материала) и **слэбов** (погружающихся тектонических плит).

Примеры сейсмологических моделей земной коры

Моделирование помогает выявлять критически важные геологические особенности, такие как границы Мохоровичича (Мохо) и Конрада.

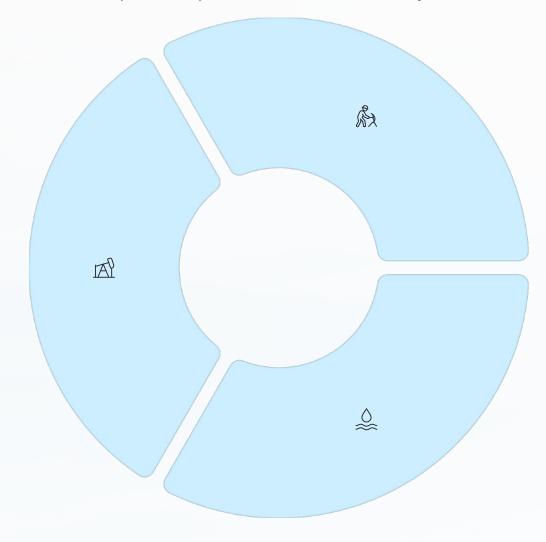
Модель континентальной коры

Показывает значительную толщину (до 70 км под горами) и слоистое строение: гранитный верхний слой и базальтовый нижний слой.

Модель океанической коры

Значительно тоньше (около 5–10 км), моложе и состоит преимущественно из базальта и габбро. Эти модели критичны для понимания тектоники плит.

Картирование границы Мохо, где скорость Р-волн резко возрастает, позволяет точно определить глубину залегания мантии.


Глава 3: Практическое применение

Роль сейсмологии в поиске полезных ископаемых

Разведочная сейсмология использует искусственные источники волн (взрывы, вибросейсмоисточники) для получения детальных изображений верхних слоев земной коры.

Нефть и Газ

Основа разведки. 3D-сейсморазведка позволяет находить ловушки углеводородов и оценивать пористость пород-коллекторов с высокой точностью.

Рудные месторождения

Используется для картирования глубокозалегающих структур, связанных с рудными телами, такими как массивные сульфиды и железные руды.

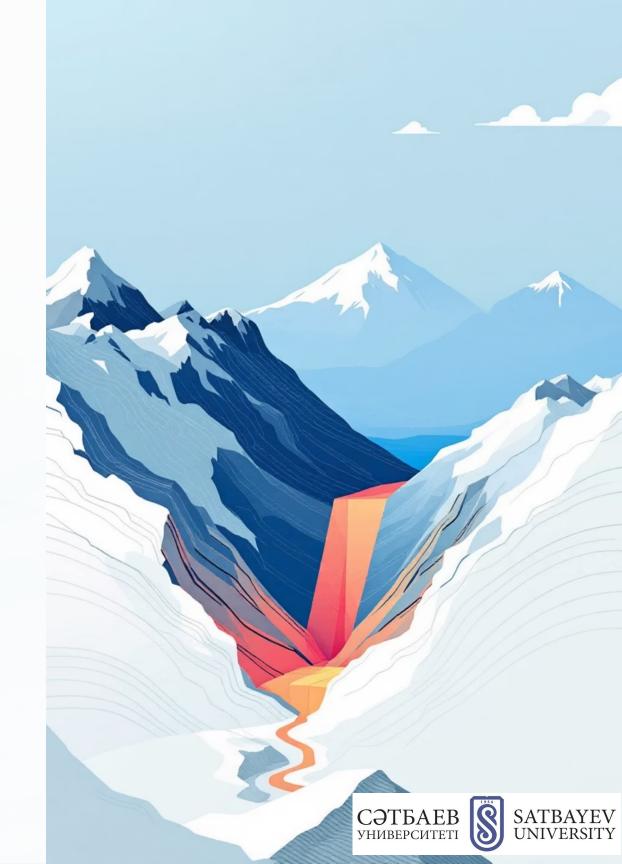
Подземные воды

Помогает определить глубину и форму водоносных горизонтов, а также структуру трещиноватых зон, важных для гидрогеологии.

Сейсмология и прогнозирование землетрясений

Хотя точное краткосрочное прогнозирование остается сложной задачей, сейсмология играет решающую роль в долгосрочной оценке рисков.

Оценка долгосрочной опасности


Построение карт сейсмического районирования на основе исторических данных о землетрясениях и тектонических разломах. Это основа для строительных норм.

Изучение предвестников

Исследование аномалий в поведении пород (например, изменение скорости волн или электромагнитных сигналов) перед крупными событиями.

Раннее оповещение

Системы мгновенного оповещения, которые детектируют быстрые Р-волны и дают секунды или десятки секунд предупреждения перед приходом разрушительных S-волн.

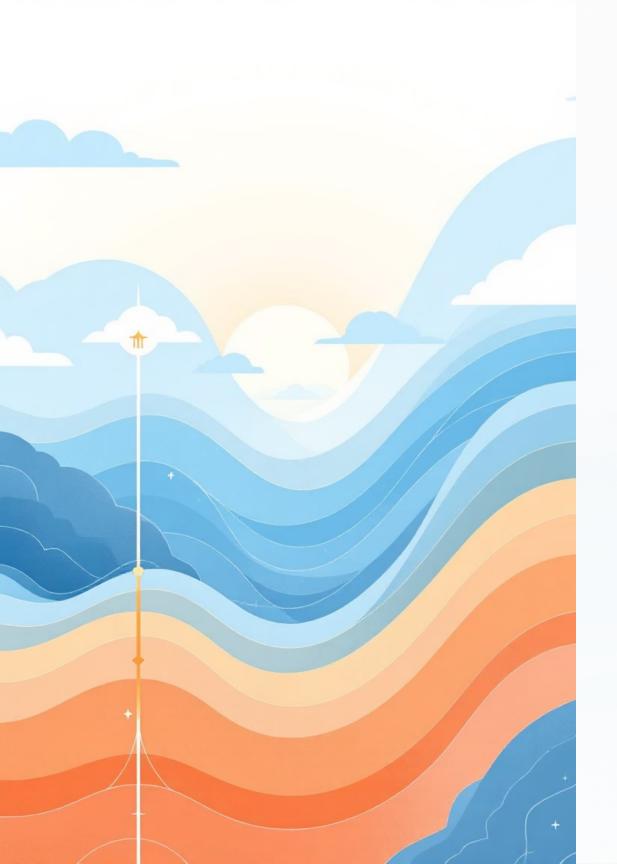
Глава 4: Будущее

Современные технологии и будущее сейсмологических исследований

Прогресс в вычислительной мощности и сенсорных технологиях открывает новые горизонты для геофизиков.

DAS (Distributed Acoustic Sensing)

Использование оптоволоконных кабелей в качестве тысяч сейсмических датчиков, позволяя получать непрерывные и высокоплотные данные по огромным территориям, включая дно океана.


Высокопроизводительные вычисления

Методы полного волнового обращения (FWI) используют суперкомпьютеры для создания невероятно детальных томографических моделей, значительно повышая точность.

Океаническая сейсмология

Развертывание автономных сейсмометров на дне океана (OBS) для изучения труднодоступных областей, таких как зоны субдукции и срединно-океанические хребты.

Ключевые выводы и их значение для геофизики

Внутреннее строение

Сейсмологические модели – это основа нашего понимания структуры Земли, от тонкой коры до твердого внутреннего ядра.

Тектонические процессы

Томография подтверждает динамику мантии, движение плит и помогает картировать зоны субдукции.

Практическое значение

Методы сейсморазведки критически важны для поиска энергетических ресурсов и оценки сейсмического риска в густонаселенных районах.

Сейсмология — это не просто изучение землетрясений, это наш способ "взглянуть" на миллиарды лет истории планеты.

Спасибо!

Вопросы и обсуждение

Дополнительные темы

- Влияние воды на скорость сейсмических волн в мантии.
- Сейсмологическое изучение других планет (марсоход InSight).
- Применение искусственного интеллекта в обработке сейсмических данных.

