### НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И.САТПАЕВА»



Институт геологии и нефтегазового дела им. К. Турысова Кафедра «Геофизика и сейсмология»

GPH1662 – «Введение в сейсмологию» 6В07201 – «Нефтегазовая и рудная геофизика»

Лекция-10

На тему: «Программное обеспечение в сейсмологии»

Преподаватель: Ратов Боранбай Товбасарович – доктор технических наук, профессор

## ГЛОССАРИЙ

| Термин           |
|------------------|
| Сейсмоданные     |
| Сейсморазведка   |
| Сейсмограмма     |
| Обработка данных |
| Миграция         |
| Интерпретация    |
| Сейсмостанция    |
| GIS (FIAC)       |

## Сбор данных: Сейсмометры, акселерометры и системы сбора

Сырые сейсмические данные являются основой для всех дальнейших исследований. Современные системы сбора данных — это сложный комплекс аппаратного и программного обеспечения, обеспечивающий непрерывный, надежный и точный поток информации.

#### Ключевые приборы и их функции

- **Сейсмометры:** Чрезвычайно чувствительные приборы, измеряющие смещение, скорость или ускорение колебаний грунта. Они регистрируют дальние и слабые землетрясения.
- Акселерометры (сильные движения): Используются для регистрации сильных движений грунта в непосредственной близости от эпицентра. Критически важны для инженерной сейсмологии и проектирования сейсмостойких конструкций.
- Системы сбора (DAS): Программное обеспечение на станциях отвечает за оцифровку аналоговых сигналов, их временную привязку (с помощью GPS/NTP) и передачу в центральное хранилище данных.
- по должно обеспечивать бесперебойную работу в режиме 24/7, обработку метаданных (информация о приборе, калибровке) и контроль качества данных в реальном времени.



### Обработка и анализ данных: Алгоритмы фильтрации и

преобразований

Необработанные сейсмические записи загрязнены шумами (микросейсмы, индустриальный шум, инструментальный дрейф). Чтобы выделить полезный сигнал, применяется специализированное программное обеспечение, использующее передовые алгоритмы.



#### Фильтрация

цифровые фильтры (например, полосовые или режекторные) используются для удаления нежелательных частотных компонент, сохраняя при этом целостность сейсмического сигнала.



#### Деконволюция

Процесс удаления эффекта отклика сейсмографа для получения истинного движения грунта. Это критически важно для точного определения параметров источника.



#### Спектральный анализ

Преобразование Фурье и вейвлет-анализ — ключевые инструменты ПО, позволяющие анализировать частотный состав волн и определять характеристики очага землетрясения.



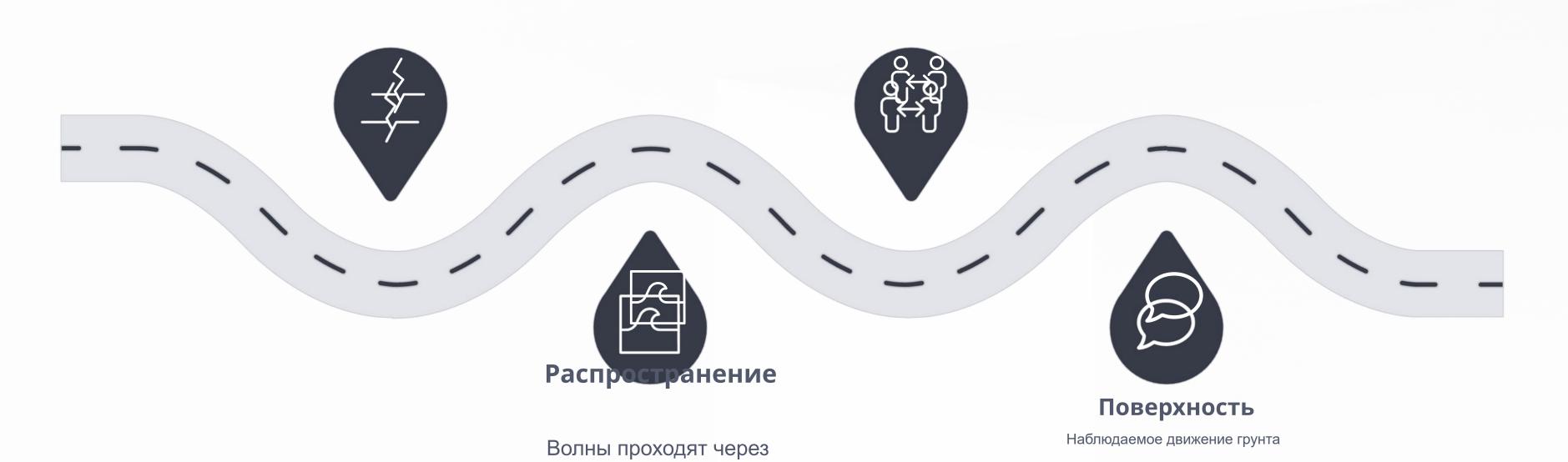
#### Автоматическое определение фаз

ПО включает алгоритмы машинного обучения для быстрого и точного автоматического определения времени прихода различных сейсмических фаз (Р и S волны), что необходимо для локализации очага.

Эффективность этих алгоритмов напрямую влияет на скорость реакции систем раннего оповещения и качество научных выводов.

#### Моделирование сейсмических процессов: От источников до распространения

#### волн


Численное моделирование является краеугольным камнем современной сейсмологии. Оно позволяет ученым имитировать сложные физические процессы, происходящие в Земле.

#### Очаг

Порождение разлома и начальная сила

#### Взаимодействие

Отражение, преломление и рассеяние



#### Ключевые области моделирования:

• Моделирование источников: Определение механики разрыва в очаге (размер разрыва, скорость распространения). ПО использует методы, такие как инверсия формы волны, для восстановления этих параметров.

неоднородности

## Программные комплексы для инверсии: Определение параметров земной коры

Инверсия — это процесс, обратный моделированию, в котором наблюдаемые данные (сейсмические волны) используются для определения физических свойств среды, через которую они прошли (скорость волн, плотность, температура).



#### Сейсмическая томография

ПО для томографии использует времена пробега или полные формы волн для построения трехмерных карт скоростей сейсмических волн, раскрывая неоднородности и аномалии в мантии и земной коре.

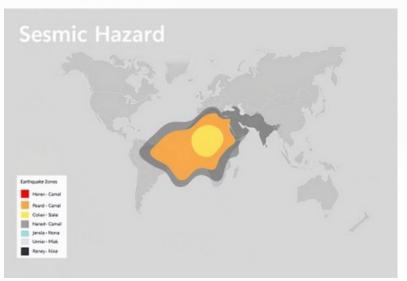


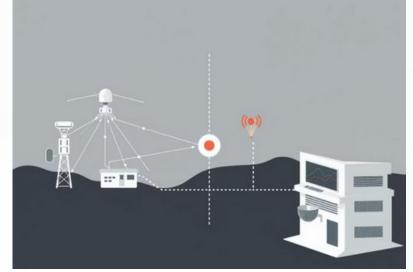
#### Инверсия очаговых механизмов

Программы, такие как Focmec, определяют ориентацию и тип смещения в очаге землетрясения, что критически важно для понимания тектонических напряжений.



### Инверсия полной формы волны (FWI)


Самый требовательный к вычислениям, но наиболее точный метод. ПО использует всю информацию, содержащуюся в сейсмограмме, для создания моделей сверхвысокого разрешения. Применяется в основном в разведочной геофизике, но находит применение и в фундаментальной сейсмологии.


Точность этих инверсионных моделей напрямую влияет на наше понимание геодинамических процессов, таких как субдукция, мантийные плюмы и формирование континентов.

#### Прогнозирование землетрясений: Современные подходы и

#### вызовы

Полное, детерминированное прогнозирование землетрясений (точная дата, время и место) остается недостижимой целью. Однако ПО играет ключевую роль в двух смежных и более реалистичных областях.





#### → Оценка сейсмической опасности (PSHA)

ПО использует статистические модели и данные о прошлых землетрясениях для расчета вероятности возникновения толчков определенной магнитуды в течение заданного периода времени. Результатом являются карты сейсмического районирования.

### Системы раннего оповещения (EEW)

ПО анализирует первые пришедшие Р-волны, которые распространяются быстрее разрушительных S-волн. Оно мгновенно оценивает местоположение и магнитуду, отправляя предупреждения на несколько секунд или десятков секунд раньше прихода сильных колебаний. Скорость и надежность алгоритмов — критичны.

#### 🗕 Вызовы

Основной вызов — разработка алгоритмов, способных точно и быстро отличать "ложные тревоги" (шумы, взрывы) от реальных, но слабых землетрясений, минимизируя время реакции.

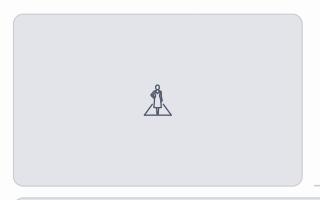
# Визуализация сейсмических данных: От 2D графиков до 3D моделей

Визуализация — это мост между сложными численными расчетами и человеческим пониманием. Современное ПО позволяет создавать не просто графики, а интерактивные, многослойные представления данных.

#### **3D Томографические**

**Визуализа**ция аномалий скоростей сейсмических волн в трехмерном пространстве помогает определить зоны повышенного напряжения и потенциально сейсмоопасные структуры.

#### Сейсмограммы и диаграммы "Водопад"


ПО отображает записи колебаний для тысяч станций, позволяя быстро идентифицировать сейсмические фазы и отслеживать распространение волн по земному шару.

#### Интерактивные

Специализированные ГИС-инструменты (Географические информационные системы) используются для наложения сейсмических данных (эпицентры, очаговые механизмы) на карты рельефа и геологические карты, обеспечивая контекст для анализа.

# Перспективы развития: Искусственный интеллект и машинное обучение

Сейсмология переживает революцию, связанную с внедрением методов искусственного интеллекта (ИИ) и машинного обучения (МО). Эти технологии позволяют обрабатывать невообразимые объемы данных и находить скрытые паттерны, которые недоступны традиционным алгоритмам.



#### Улучшение локализации

Нейронные сети обучаются на огромных массивах данных, чтобы превзойти классические методы в точности и скорости определения времени прихода фаз и локализации очага землетрясения.



#### Прогноз афтершоков

МО используется для моделирования сложных процессов взаимодействия разломов и прогнозирования пространственно-временного распределения афтершоков после крупного события.



#### Обработка шума и распознавание

Глубокое обучение позволяет эффективно отделять микросейсмический шум от слабых, но важных тектонических сигналов, значительно увеличивая "видимость" сети.

Особенно перспективно применение МО в системах раннего оповещения, где скорость принятия решения измеряется миллисекундами.



# Заключение: Будущее сейсмологии с помощью ПО

Программное обеспечение стало не просто инструментом, а ключевым элементом, который трансформировал сейсмологию из преимущественно наблюдательной науки в область точного численного моделирования и прогнозирования.

10x

## **Ускорение** обработки

Благодаря параллельным вычислениям и МО. 95%

#### **Автоматизация**

Сейсмического обнаружения и фазовой подборки.

1.5

#### Детализация

Моделей земной коры в сравнении с прошлым десятилетием.

Будущее сейсмологии — это интеграция все более сложных и интеллектуальных программных решений. Эти инструменты позволят нам не только лучше понять внутреннее устройство Земли, но и значительно снизить риски для человечества, связанные с сейсмической опасностью.