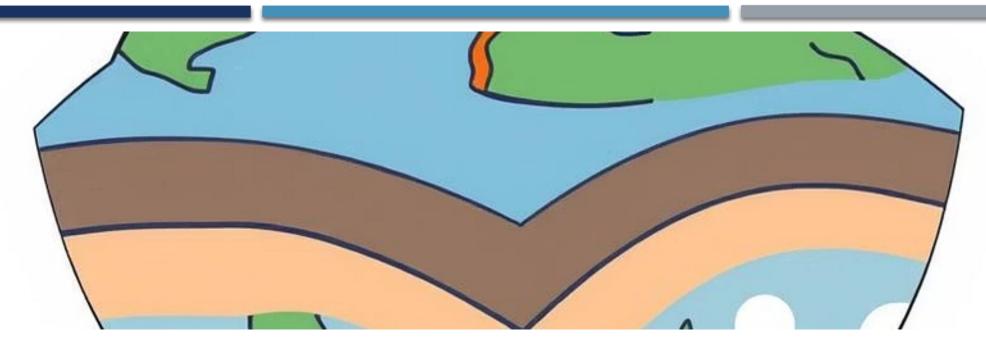
НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И.САТПАЕВА»


Институт геологии и нефтегазового дела им. К. Турысова Кафедра «Геофизика и сейсмология»

GPH1662 – «Введение в сейсмологию» 6В07201 – «Нефтегазовая и рудная геофизика»

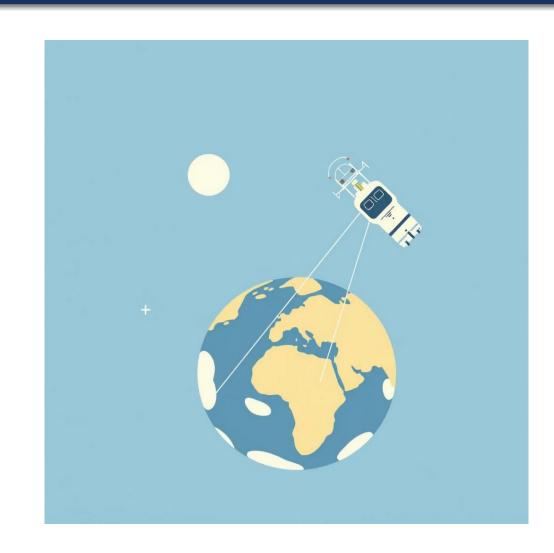
Лекция-11

На тему «Искусственный интеллект и большие данные в сейсмологии: проблемы прогноза землетрясений»

Преподаватель: *Ратов Боранбай Товбасарович* – доктор технических наук, профессор

Почему прогноз землетрясений — одна из самых сложных задач науки

Землетрясения не случаются случайно: существуют глобальные сейсмические пояса и циклы активности. Однако точное предсказание времени и места остаётся недостижимым из-за экстремальной сложности процессов в недрах Земли.


Пример: Южно-Японский регион демонстрирует периодичность крупных толчков в 100-150 лет, но точный прогноз конкретного события остаётся невозможным даже при наличии исторических данных.

БОЛЬШИЕ ДАННЫЕ В СЕЙСМОЛОГИИ: ЧТО МЫ ИМЕЕМ СЕГОДНЯ

Источники данных

- Глобальные сети сейсмометров
- GPS-мониторинг деформаций
- Спутниковые наблюдения
- Дистанционное зондирование
- Дополнительные параметры окружающей среды

Масштаб: GPS-мониторинг деформаций земной коры после землетрясения 2004 года на Суматре (М9.2) собрал данные, позволившие переосмыслить модели субдукции. Современные базы данных содержат миллионы параметров, требующих мощных вычислительных ресурсов для обработки.

Искусственный интеллект в анализе сейсмических данных

Трансформеры и нейросети

Новейшие модели выявляют скрытые закономерности в многомерных сейсмических данных.

Факторный анализ

Методы главных компонент раскрывают латентные факторы сейсмичности, невидимые традиционным подходам.

Дистанционное зондирование

Генеративные модели обрабатывают спутниковые изображения для выявления предвестников подземных процессов.

Ограничения и проблемы ИИ в прогнозе землетрясений

Даже при больших данных и мощных алгоритмах ИИ не может с уверенностью назвать точное время и место землетрясения. Высокая сложность и многопараметричность геологических процессов, мультиколлинеарность данных создают фундаментальные препятствия.

Поучительный случай: Неудачные попытки предсказать землетрясение 1976 года в Таньшане (Китай, М7.5) — несмотря на множество наблюдаемых признаков, землетрясение произошло внезапно, унеся около 250 тысяч жизней.

СОВРЕМЕННЫЕ ПОДХОДЫ К УЛУЧШЕНИЮ ПРОГНОЗА

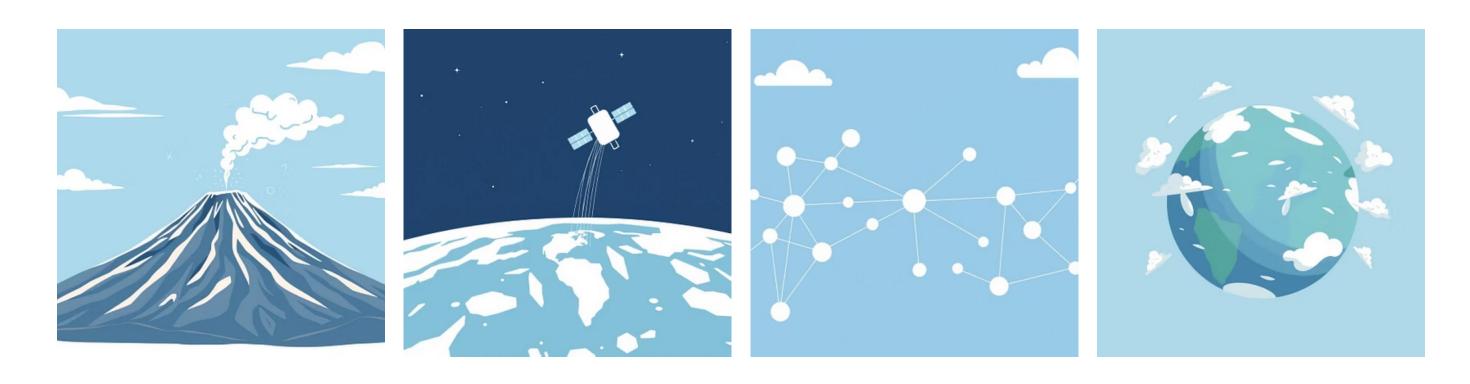
01

Интеграция данных

Объединение сейсмики, GPS, спутников, гидрогеологии и приливных эффектов в единую систему анализа.

02

Многоуровневый анализ


Применение машинного обучения и статистических моделей для выявления сложных взаимосвязей между параметрами.

03

Оценка комплексного риска

Примеры: анализ Южного Эгейского региона с учётом мультиопасностей — землетрясения, цунами, оползни.

Кейсы успешного применения ИИ и больших данных

Практические достижения: Мониторинг вулканов (вулкан Синабунг, Индонезия) с помощью DInSAR и GPS обеспечивает точный прогноз извержений. Автоматическое обнаружение и классификация сейсмических событий достигает высокой точности, а генеративные модели анализируют спутниковые данные для выявления изменений земной поверхности, предшествующих крупным подземным событиям.

ВЗГЛЯД В БУДУЩЕЕ: ЧТО ДАСТ РАЗВИТИЕ ИИ И БОЛЬШИХ ДАННЫХ

Системы раннего предупреждения

Многофакторные системы с учётом комплексных данных и адаптивным обучением в реальном времени.

Снижение потерь

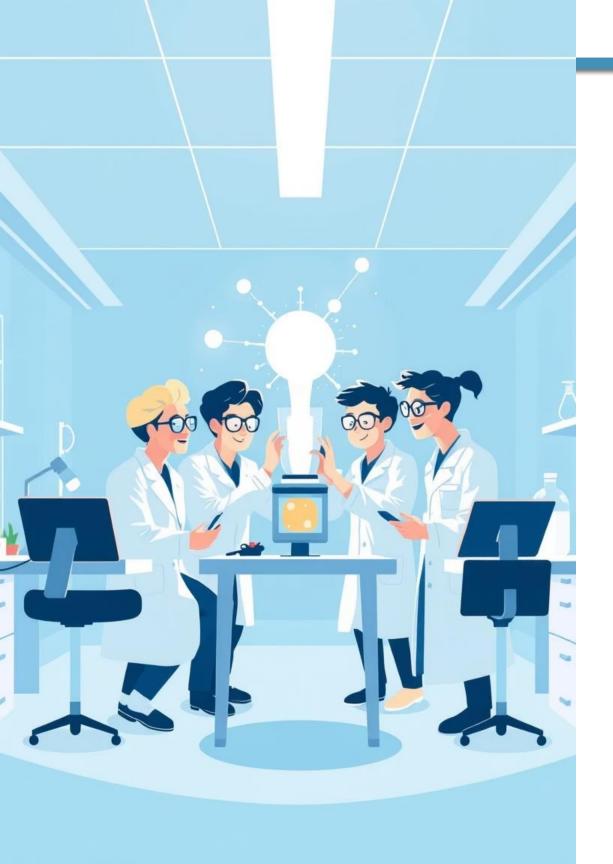
Сокращение человеческих жертв и экономических убытков через более эффективное предупреждение.

Устойчивое развитие

Возможность планирования городской инфраструктуры и миграционных процессов на основе сейсмической информации.

Главные вызовы и задачи для науки и технологий

Данные и стандартизация


Улучшение качества, полноты и доступности данных, глобальная стандартизация обмена информацией между организациями и странами.

Интерпретируемость ИИ

Разработка объяснимых моделей, способных не просто предсказывать, но и раскрывать физический смысл своих рекомендаций.

Этика и ответственность

Вопросы ответственности при использовании ИИ в критических системах, управление рисками ложных прогнозов и доверие населения.

Заключение: ИИ и большие данные — ключ к будущему сейсмологии

Прогноз землетрясений остаётся одним из величайших вызовов науки, но искусственный интеллект и большие данные открывают новые горизонты для понимания подземных процессов.

Междисциплинарность

Совместная работа геофизиков, сейсмологов, специалистов по ИИ и инженеров необходима для прорыва.

Инвестиции

Долгосрочное финансирование технологий и исследований — залог спасения жизней и устойчивого развития сейсмоактивных регионов.