

10-лекция. Внешние силовые воздействия, массы и моменты инерции нагрузки, приведение к степеням подвижности механизмов

Исабеков Жанібек Назарбекұлы

План занятия

- Типы сил в механизмах Движущие, сопротивления, реакции, инерции их роль в работе системы.
- Движущие силы Источники энергии: давление, тяжесть, момент двигателя.
- Силы сопротивления Полезные (резание, подъём) и вредные (трение, потери).
- Силы реакции в кинематических парах Внутренние связи между звеньями, обеспечивающие передачу движения.
- Силы инерции Возникают при ускорении, учитываются через принцип Даламбера.
- Принцип Даламбера Приведение механизма к равновесию с учётом инерционных сил.
- Звено приведения Упрощение анализа замена всей системы одним эквивалентным звеном.
- Уравнение движения машины Связь между работой сил и изменением кинетической энергии.
- Дифференциальная форма уравнения Мгновенное описание динамики механизма.
- Метод Жуковского Графоаналитический способ определения приведённой силы.
- Жесткий рычаг Жуковского План скоростей, поворот, нанесение сил, суммирование моментов.
- Контрольные вопросы Тест на понимание ключевых понятий и формул.

Среди сил, действующих на механизм, различают:

- б) силы сопротивления $F_{\scriptscriptstyle c}$ или моменты $M_{\scriptscriptstyle c}$
- в) силы реакции в кинематических парах F_{ij}
- г) силы инерции F_{μ} или моменты сил инерции M_{μ}

Движущие силы

Это силы или моменты, которые создают движение механизма, ускоряют его звенья и совершают положительную работу, то есть передают энергию системе.

Примеры:

Сила давления газов на поршень в двигателе внутреннего сгорания (ДВС) — именно она заставляет поршень двигаться вниз.

Сила тяжести при **о**пускании груза в грузоподъёмном механизме — когда груз опускается, он может вращать барабан лебёдки, выполняя положительную работу.

Момент, создаваемый электродвигателем на валу - приводит в движение остальные элементы механизма.

Силы сопротивления

Это силы, которые противодействуют движению, тормозят звенья и совершают отрицательную работу, то есть отбирают энергию у системы.

Разновидности сил сопротивления:

1. Полезные силы сопротивления - те, которые создают производственный эффект, то есть работа против этих сил полезна.

Примеры:

Сила тяжести при **подъёме груза** - мы совершаем работу против этой силы, но результат (поднятый груз) полезен.

Сопротивление резанию при обработке металла — двигатель совершает работу против силы резания, и это приводит к нужному результату (изменение формы детали).

2. Вредные силы сопротивления - силы, которые **не дают полезного эффекта**, а только снижают эффективность механизма.

Силы реакции в кинематических парах

Это силы, которые возникают в местах соединения звеньев (в опорах, шарнирах, направляющих и т.п.). Они обеспечивают связь между звеньями и передачу движения от одного элемента к другому.

Для всего механизма эти силы считаются внутренними, потому что они действуют между звеньями одной системы.

Но для каждого отдельного звена — они являются внешними, так как оказывают на него воздействие со стороны других звеньев.

Примеры:

Сила давления пальца на шатун в кривошипно-шатунном механизме.

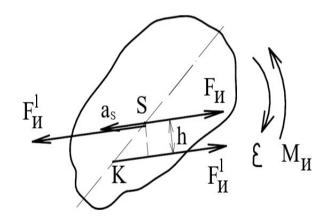
Реакция опоры на вал в подшипнике.

Сила в шарнире, соединяющем два звена рычажного механизма.

Силы инерции

силы инерции $F_{_{\rm I\! I}}$ или моменты сил инерции $M_{_{\rm I\! I}}$

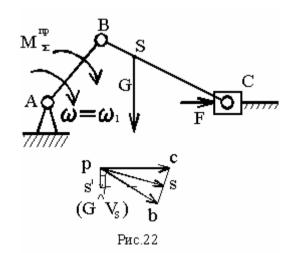
возникают при переменном движении звеньев механизма и могут быть как движущими, так и силами сопротивления (в зависимости от их направления относительно направления движения звеньев).


Фактически эти силы действуют на тело, вызывающее ускорение дру- гого тела. Однако, условное приложения сил инерции к ускоряемому телу позво-ляет рассматривать его в равновесии

принцип Даламбера

Силы инерции относятся к категории распределенных или так называемых массовых сил, которые как и другие аналогичные силы могут быть приведены к главному вектору и главному моменту

 F_u =-ma $_s$; M_u =-J $_s$ · ϵ ; где m и J $_s$ – масса и момент инерции звена относительно оси, проходящей через центр масс a_s – ускорение центра масс;


ε – угловое ускорение звена.

исследования закона движения механизма

- Для исследования закона движения механизма его удобно заменить одним условным звеном – звеном приведения, имеющим закон движения аналогичного звена реального механизма.
- Все внешние силы, действующие на звенья при этом заменяются одной
- приведенной силой F^{np} или моментом M^{np} , мощности P^{np} которых равны
- мощностям P_i заменяемых сил F_i и моментов сил M_i , т.е.

Пример кривошипно-ползунного механизма

Уравнение движения машины

- Работу машины можно разбить на 3 периода:
- 1) период пуска (разгон);
- 2) период установившегося движения;
- 3) период остановки (выбега); Уравнение движения показывает, как силы, действующие на звенья механизма, связаны с их движением (скоростями, ускорениями)

 $\Delta T = Aд - Ac$ $\Delta T = T - T_0 - изменение кинетической энергии за рассматриваемый промежуток времени
<math>A_{\pi} - A_{c} - суммарная работа действующих сил за рассматриваемый промежуток$

Дифференциальная форма

• - показывает **мгновенную зависимость** между силами и движением, то есть что происходит **в** каждый момент времени:

$$M_{
m np} = rac{dT_{
m nj}}{darphi}$$

- Разница между формами:
- Интегральная форма это общее уравнение энергии (для периода движения).
- Дифференциальная форма это **мгновенное уравнение движения**, которое используется при анализе динамики в каждый момент времени.

Таким образом

• уравнение движения машины приводится к тому или иному конкретному виду и решается графическим и графоаналитическим методами, а учитываемые силы и моменты сил, а также приведенные массы и моменты инерции могут быть как постоянными так и переменными величинами, зависящими от того или иного фактора.

Физический смысл:

- •В период пуска $A_{_{\! /}}$ - $A_{_{\! /}}$ = ΔT >0, т.е. происходит ускорение движения звеньев, являющегося неустановившемся.
- •В период установившегося движения $A_{_{\! /}}$ - $A_{_{\! /}}$ = ΔT =0, т.е. скорости звеньев в конечный и начальный моменты цикла равны и вся работа движущихся сил расходуется на преодоление сопротивлений.
- ullet В период остановки $A_{_{\rm J}}$ - $A_{_{\rm c}}$ = ΔT <0, движение продолжается некоторое время за счет накопленной кинетической энергии, поглощаемой за счет сопротивления движению.

Метод Жуковского

- Профессор **H. Е. Жуковский** предложил **графический метод**, который позволяет находить *приведённую силу* то есть силу, действующую на звено приведения, эквивалентную по работе всем силам, приложенным к механизму.
- Сам метод строится на равенстве мощностей: $F^{\pi p} \cdot Va \cdot cos(A\pi p) = \sum Fi \cdot Vi \cdot cos(Ai)$
 - Fi силы, действующие на механизм (например, веса, реакции, инерционные силы);
 - •Vi— скорости точек приложения этих сил;
 - •аі углы между направлением силы и скоростью точки;
 - Fпр искомая приведённая сила, эквивалентная всем остальным по мощности

Как работает метод Жуковского

•Строят план скоростей - это чертёж, на котором показано, с какой скоростью движутся точки механизма.

Этот план поворачивают на 90°.

После поворота на него наносят все действующие силы (и даже силы инерции).

Этот повернутый план называется жёсткий рычаг Жуковского.

Он как будто превращает механизм в один рычаг, на который действуют все силы.

•Для каждой силы можно найти, **насколько сильно она «крутит» этот рычаг** - это момент силы.

Суммируя эти моменты, получают общий «крутящий эффект» всех сил.

•Потом ищут такую **одну приведённую силу**, которая даёт тот же самый момент - то есть действует так же, как все силы вместе.

1. Какая из перечисленных сил совершает положительную работу и передает энергию механической системе?

- а) Сила сопротивления резанию
- б) Сила трения в подшипниках
- в) Сила давления газов на поршень в ДВС
- г) Сила тяжести при подъеме груза

2. Силы, которые противодействуют движению и отбирают энергию у системы, называются:

- а) Движущими силами
 - б) Силами инерции
 - в) Силами сопротивления
 - г) Силами реакции

3. Согласно принципу Даламбера, силы инерции условно прикладываются к ускоряемому телу, чтобы:

- а) Увеличить его скорость
 - б) Рассматривать его в состоянии равновесия
 - в) Превратить его в звено приведения
 - г) Учесть только силы сопротивления

4. Главный вектор сил инерции для звена вычисляется по формуле:

- a) $Mu = -JS \cdot \varepsilon$
 - б) $Fu = m \cdot aS$
 - в) $Fu = -m \cdot aS$
 - r) M ν = JS · ε

5. В период установившегося движения машины разность работ движущих сил и сил сопротивления (Ад – Ac) равна:

- a) ∆T > 0
 - б) $\Delta T < 0$
 - B) $\Delta T = 0$
 - r) $\Delta T = const \neq 0$

6. Метод Жуковского используется для определения:

- а) Момента инерции звена
 - б) Скорости точки механизма
 - в) Приведенной силы, эквивалентной по работе всем силам механизма
 - г) Силы реакции в кинематической паре

7. Что такое «жесткий рычаг Жуковского»?

- а) Реальное звено механизма, к которому приложены все силы
 - б) План скоростей, повернутый на 90 градусов, на который наносятся все силы
 - в) Звено приведения с постоянной массой
 - г) График зависимости силы от скорости

8. Силы реакции в кинематических парах для всего механизма являются силами...

- а) Внешними
 - б) Движущими
 - в) Внутренними
 - г) Инерционными

9. Уравнение движения в дифференциальной форме описывает:

- а) Суммарную работу сил за весь период движения
 - б) Изменение кинетической энергии за цикл
 - в) Мгновенную зависимость между силами и движением
 - г) Среднюю скорость звена

10. Приведение механизма к одному звену (звену приведения) осуществляется с условием равенства:

- а) Сил, приложенных к звеньям
 - б) Масс и моментов инерции
 - в) Мощностей всех заменяемых сил и приведенной силы
 - г) Скоростей всех точек механизма