

13-лекция. СИСТЕМЫ УПРАВЛЕНИЯ СРЕДСТВАМИ РОБОТОТЕХНИКИ ЧЕЛОВЕКОМ-ОПЕРАТОРОМ

Рассмотрим системы управления роботов и других средств робототехники с человекомоператором в контуре управления. Такие системы, как известно, относятся уже не к системам автоматического управления (САУ), рассмотренным ранее, а к автоматизированным системам управления (АСУ), в более широком плане человеко-машинным 6.1 биотехническим Ha рис. системам. приведена управления схема системы техническим объектом с человеком-оператором в контуре управления. Здесь человекоператор выполняет функции устройства управления. Он получает или сам формирует задание G для управляемой им технической системы, получает информацию от сенсорной системы и помимо нее с помощью своих органов чувств о состоянии внешней среды и самой управляемой технической системы и формирует управляющие воздействия Gт на эту систему так, чтобы обеспечить изменение контролируемых ее выходных переменных х и Q в соответствии с заданием. Области применения такого управления когда реализация автоматического управления невозможна на базе современной техники или невыгодна по сравнению с управлением человеком.

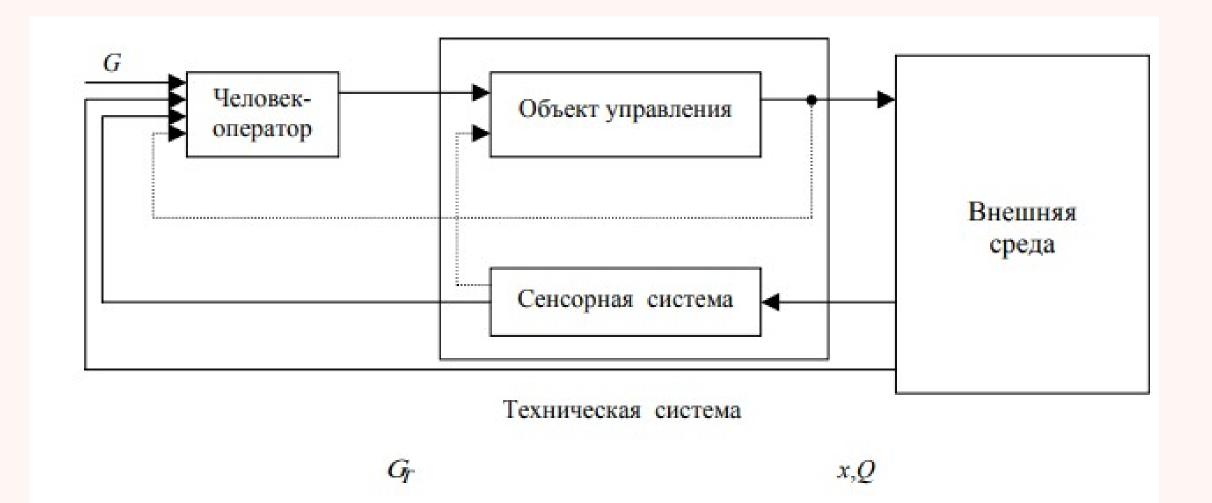
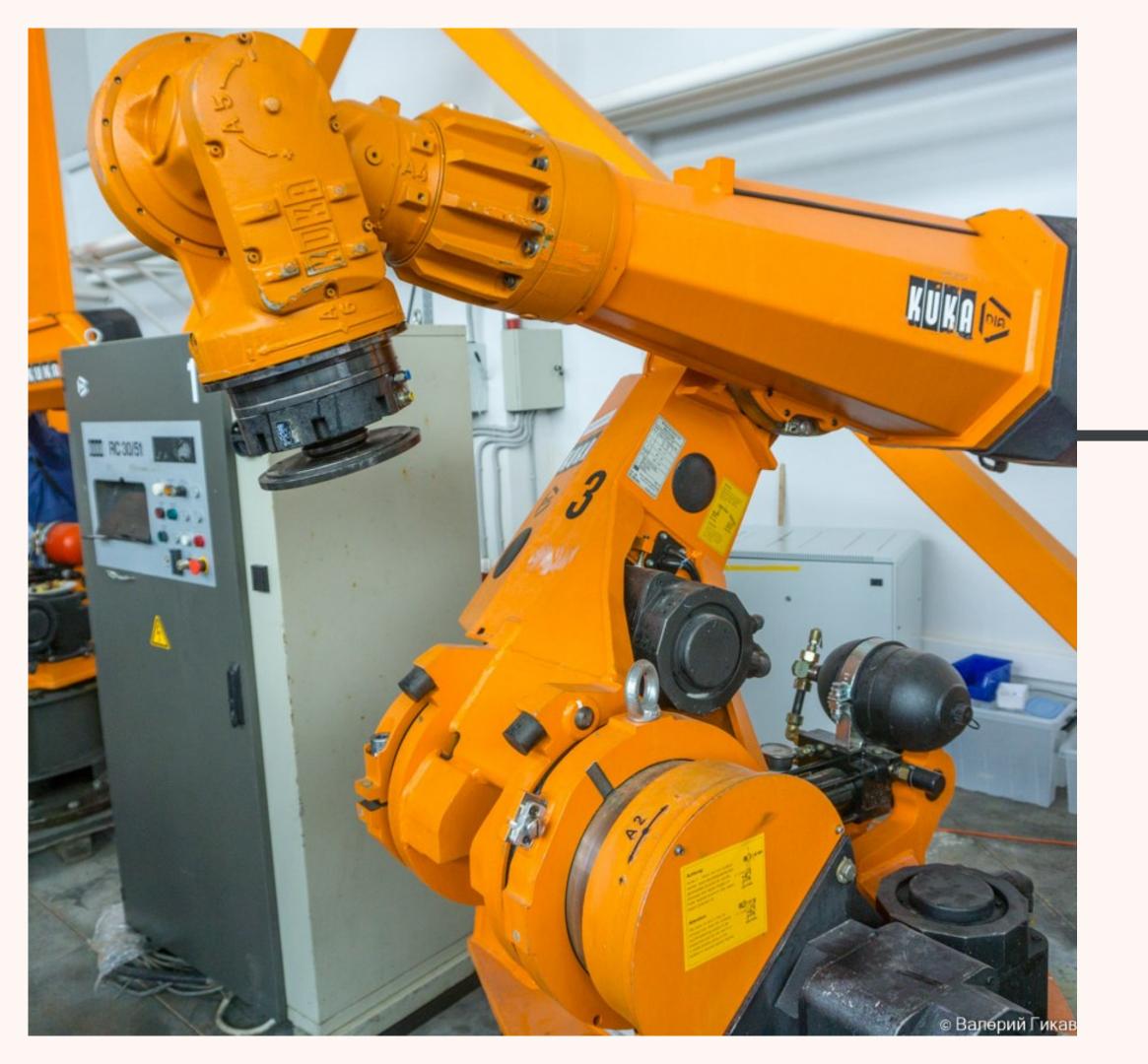



Рис. 6.1. Схема человекомашинной системы управления

Рассмотрение систем управления со стороны человека-оператора начнем с их классификации.

- 1. В зависимости от уровня в иерархии управления движением, на котором участвует человек, различают следующие типы такого управления: командное управление отдельными приводами на первом уровне управления; управление копирующее и с помощью задающей рукоятки на втором (программном) и третьем (адаптивном) уровнях; супервизорное и интерактивное управление на четвертом уровне.
- 2. По месту нахождения (удалению) человека-оператора относительно управляемого объекта различают: местное управление; дистанционное управление; с механической или электрической связью с управляемым объектом (на десятки метров); кабельное управление (до сотен метров); телеуправление (управление по каналам связи, дальность не ограничена). Иногда телеуправление рассматривается как вариант дистанционного управления, однако его целесообразно выделить, поскольку переход к телеуправлению предполагает введение в систему управления системы связи, в которой передаваемая информация претерпевает преобразование в форму, специально предназначенную для передачи на большие расстояния. При этом эта система связи может оказаться значительно сложнее всей остальной системы управления.
- 3. По виду режима работы, в котором участвует человек, возможны следующие варианты такого участия: выполнение функций верхних уровней системы управления (обработка сенсорной информации, оценка ситуации, синтез модели внешней среды, планирование поведения); управление выполнением конкретных технологических операций; программирование.
- 4. По способу подключения человека-оператора к технической системе существуют следующие варианты соответствующих устройств: устройства управления, входящие в состав управляемого объекта (средства робототехники) и специально предназначенные для управления объектом только от человека-оператора (например, задающий манипулятор в системе копирующего манипулятора); устройства, входящие в состав устройства автоматического управления и предназначенные для перехода на управление со стороны человека-оператора (например, пульт оператора для программирования робота методом обучения); специальные устройства, выполняющие функции интерфейса "человекробот", которые могут подключаться к устройству управления робота для выполнения каких-либо (из перечисленных выше) функций по его управлению. Далее рассмотрим системы управления согласно первой классификации по уровню управления.

Системы командного управления

управление предполагает подключение человека-оператора на нижнем уровне управления роботом для управления отдельными приводами, и релейном осуществляется режиме управления перемещением и скоростью. Командное управление применяется исключительно как дополнительный способ управления, например, в промышленных роботах для их программирования методом обучения, а также в аварийных и нештатных ситуациях. Точность такого управления определяется умением оператора, через которого замыкается зрительная обратная связь в контуре управления. Быстродействие при этом очень низкое, так как, во-первых, для получения приемлемой точности такое управление ведется обычно на сниженной скорости, а, воработают приводы вторых, потому, ЧТО здесь последовательно.

Системы копирующего управления манипулятором

Этот способ дистанционного управления манипуляторами человекомоператором был изобретен для выполнения работ в опасных для человека условиях. Рис. 6.2 иллюстрирует принцип такого управления. Объектом управления является исполнительный манипулятор ИМ, который можно назвать также копирующим, а органом управления им служит задающий манипулятор 3М. Задающий манипулятор кинематически подобен исполнительному. Вместо рабочего органа, как у исполнительного манипулятора, у задающего имеется рукоятка, которую оператор держит в своей руке. Оператор, перемещая эту рукоятку, заставляет рабочий орган исполнительного манипулятора повторять это движение. Таким образом, исполнительный манипулятор повторяет, копирует движение задающего. Отсюда название этой манипуляционной системы — копирующий манипулятор.

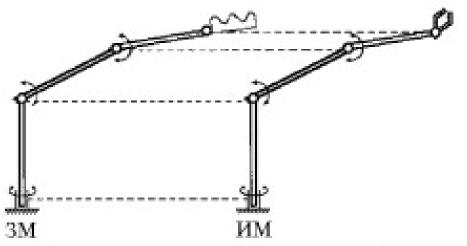
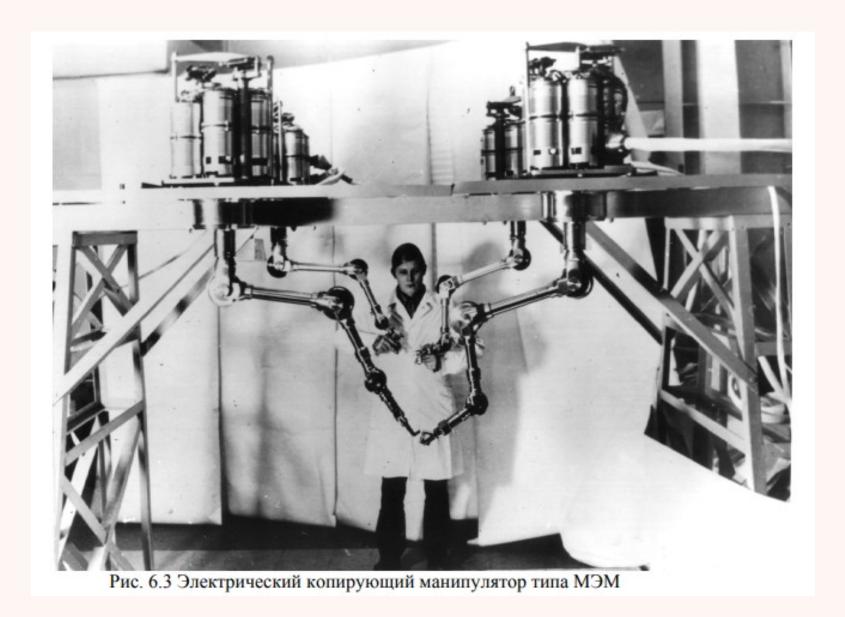
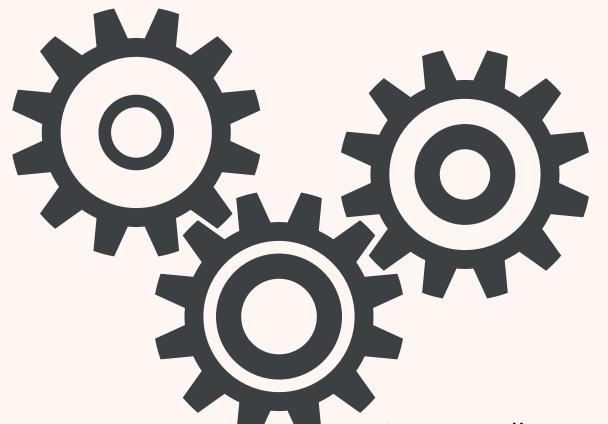
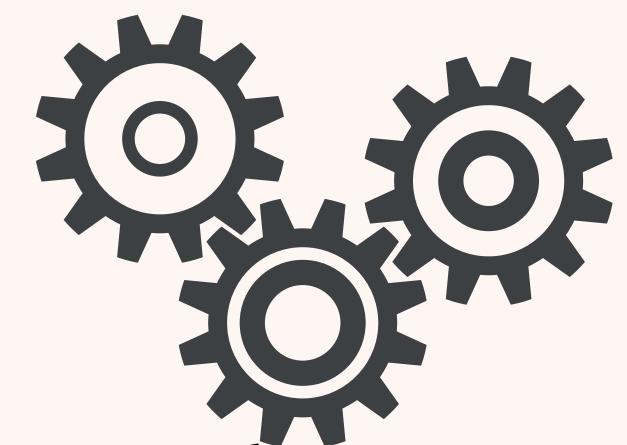





Рис. 6.2. Принцип действия копирующего манипулятора

В самых первых конструкциях таких манипуляторов не было приводов. Звенья исполнительного и задающего манипуляторов были соединены механическими тросами и тягами, посредством которых исполнительный манипулятор перемещался действием усилия со стороны человекаоператора, приложенного к задающему манипулятору. В следующем поколении копирующих манипуляторов эти механические связи были заменены электрическими в виде синхронных передач. На рис. 6.3 показан внешний вид такой системы из двух копирующих манипуляторов типа МЭМ со снятыми кожухами с блоков приводов. Значительно большие точность, быстродействие и практически неограниченную грузоподъемность имеют копирующие манипуляторы на следящих приводах, которые отрабатывают рассогласование датчиков положения соответствующих звеньев обоих манипуляторов. В результате исполнительный манипулятор в целом и его рабочий отслеживают положение задающего манипулятора, орган перемещаемого оператором

Задающий манипулятор может быть намного меньше исполнительного, чтобы лучше соответствовать размерам рабочей зоны руки человека, а также ограничениям на пространство, предоставляемое оператору с пультом управления, где размещается задающий манипулятор. Существуют два типа систем копирующих манипуляторов — необратимые, или одностороннего действия (ОДС), и обратимые, или двустороннего действия (ДСД). Второй тип отличается от первого наличием эффекта силового очувствления. Оператор, перемещая задающий манипулятор, ощущает на своей руке противодействующее усилие, пропорциональное усилию, с которым рабочий орган исполнительного манипулятора действует на объекты внешней среды (так называемый эффект отражения усилия). В предыдущей главе уже говорилось, что такое очувствление необходимо для выполнения движений при наличии внешних связей и препятствий (операции сборки типа "вал – втулка" и резьбового соединения, силовое сканирование поверхности и т. п.) Если в копирующих манипуляторах одностороннего действия приводы отсутствуют, то в системах двустороннего действия они необходимы для осуществления указанного эффекта силового очувствления. Описанные виды копирующих манипуляторов относятся к манипуляторам двустороннего действия.

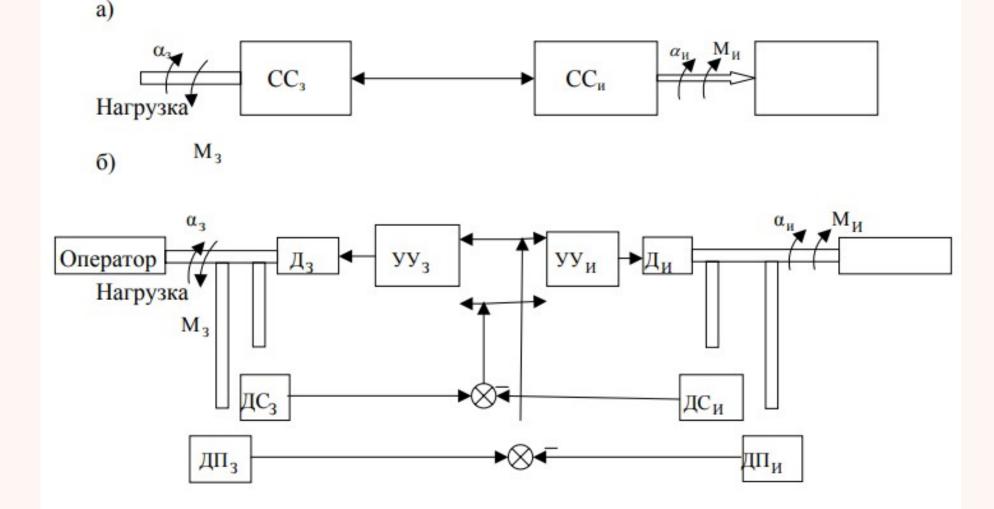


Рис. 6.4. Функциональная схема симметричной системы управления степенью подвижности копирующего манипулятора: УУ_{3,} УУ_и — устройства управления приводов задающего и исполнительного манипуляторов

На рис. 6.4 приведена типовая функциональная схема одного канала копирующего манипулятора двустороннего действия со следящими приводами. Эта схема называется симметричной, так как в ней задающая и исполнительная части идентичны. На вход приводов подается с разным знаком рассогласование

$$\Delta \alpha = \alpha_{\rm H} - \alpha_{\rm 3}$$
,

где $\alpha_{\rm H}$ и $\alpha_{\rm 3}$ — углы поворота приводов одной степени подвижности соответственно исполнительного и задающего манипуляторов. Скоростная обратная связь, осуществляема с помощью датчиков скорости ДС_и, ДС₃, создает обычную динамическую коррекцию.

Динамика системы (см. рис. 6.3) в линейном приближении может быть описана следующими уравнениями:

$$J_{3}p^{2}\alpha_{3} + k'_{3}p\alpha_{3} = M_{3} + W'_{3}(p)p\Delta p + W_{3}(p)\Delta p,$$

$$(J_{N} + J_{H})p^{2}\alpha_{N} + k'_{N} = -M_{N} - W'_{N}(p)p\Delta p - W_{N}(p)\Delta p,$$
(6.1)

где $\Delta \alpha = \alpha_{\mathsf{N}} - \alpha_{\mathsf{3}}$; k'_{3} , k'_{N} – коэффициенты демпфирующих скоростных сил; J_{3} , J_{N} , J_{H} — моменты инерции; W'_{3} (p), W_{3} (p), W'_{N} (p), W_{N} (p) — передаточные функции скоростных и позиционных контуров приводов на задающей и исполнительной сторонах.

Выразив из второго уравнения $\Delta \alpha$ и подставив это выражение в первое, получим:

$$M_{3} = \frac{W_{3}(p) + pW'_{3}(p)}{W_{N}(p) + pW'_{N}(p)} \left[M_{N} + (J_{N} + J_{H})p^{2}\alpha_{N} + k'_{N}p\alpha_{N} \right]$$

$$+ J_{3}p^{2}\alpha_{3} = k'_{3}p\alpha_{3}$$

$$(6.2)$$

Полагая задающую и исполнительную системы управления идентичными, можно упростить выражение перед квадратной скобкой следующим образом:

$$\frac{W_3(p) + pW_3'(p)}{W_M(p) + pW_M'(p)} \cong \frac{W_3(0)}{W_M(0)} = \frac{k_3}{k_M} = k_M \cdot (6.3)$$

Здесь $k_{\rm M}$ — коэффициент масштабирования ощущения оператором нагрузки на исполнительной оси.

С учетом (6.3)

$$M_3 = k_M \left[M_{\text{M}} + (J_{\text{M}} + J_{\text{H}}) p \alpha_{\text{M}} - k_{\text{M}}' p \alpha_{\text{M}} \right] + J_3 p^2 \alpha_3 + k_3' p \alpha_3. \tag{6.4}$$

Погрешность отражения усилия

$$\Delta M = M_3 - k_M (M_N + J_H p^2 \alpha_N) = (J_3 p^2 + k_3' p) \alpha_3 + k_M (J_N p^2 + k_N' p) \alpha_N.$$

Первый член этого выражения — внутренний момент на задающей стороне, а второй — на исполнительной стороне. В этих членах первое слагаемое определяет погрешность, вызванную инерционностью приводов, а второе — скоростными силами сопротивления. Для уменьшения этой погрешности в приводах применяют положительную скоростную обратную связь, компенсирующую члены 3 3 k p ′ α и k p И И ′ α , и последовательную коррекцию в виде ПИ-звеньев для устранения статической ошибки слежения. Однако кардинальный путь повышения точности отражения усилия — это применение на задающей стороне контура управления непосредственно по разности (М М) 3 МИ – k . На рис. 6.5 показана схема соответствующей системы управления. Это несимметричная схема, в которой исполнительный привод отражает угол α3 , в то время как задающий привод отрабатывает момент МИ . Для демпфирования этого привода и получения необходимого качества отработки момента применяют гибкие обратные связи и последовательные корректирующие звенья.

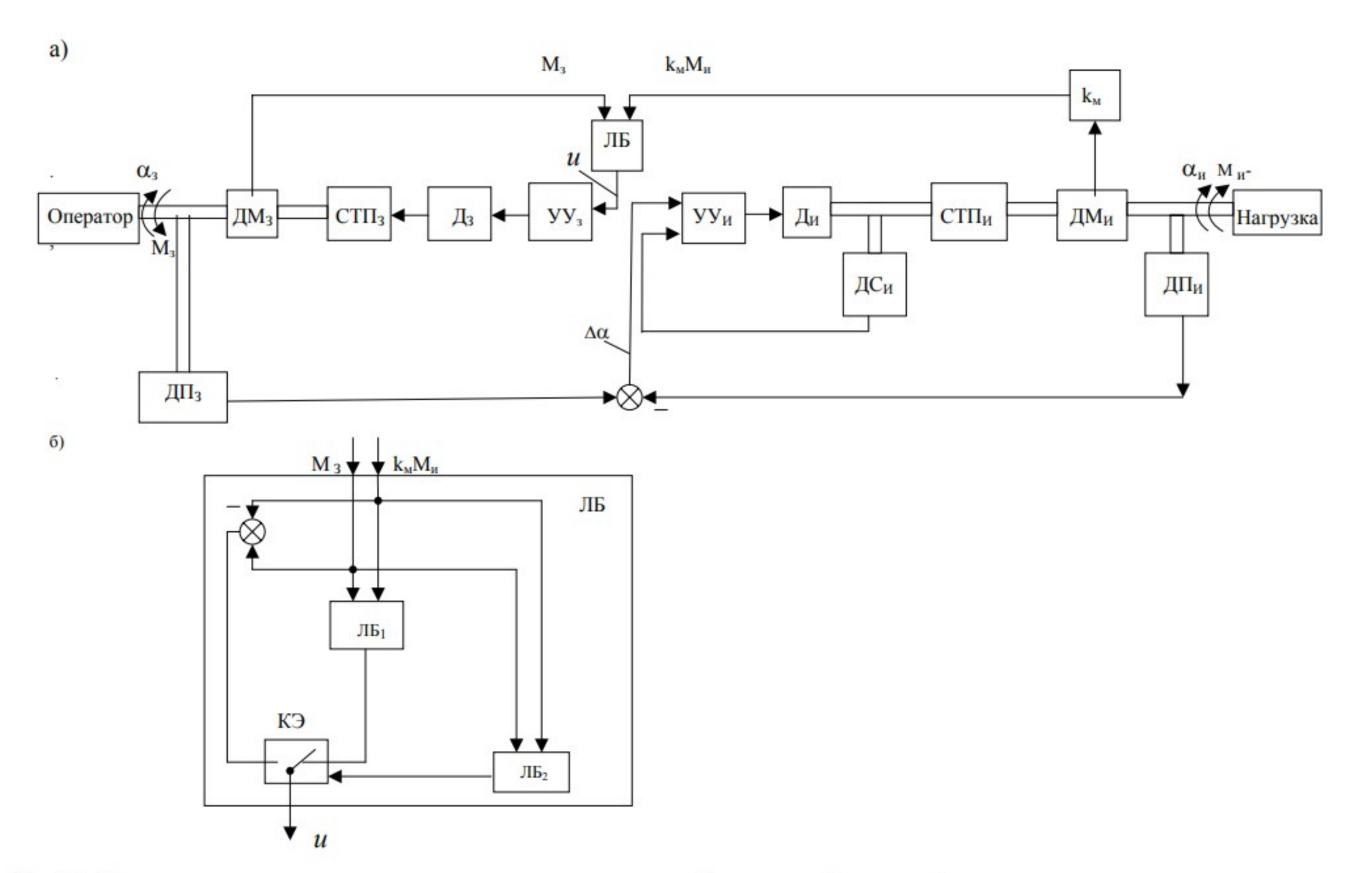
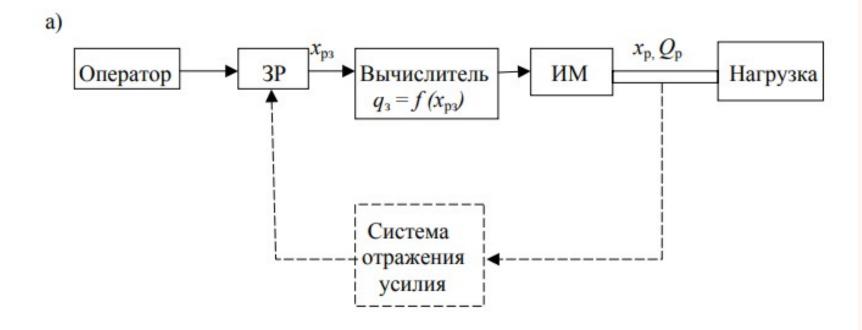
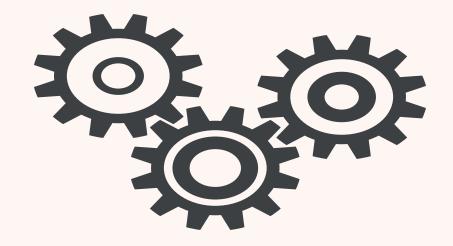
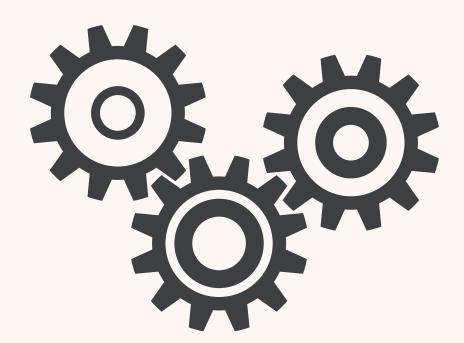
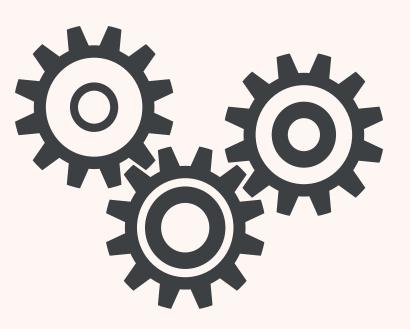
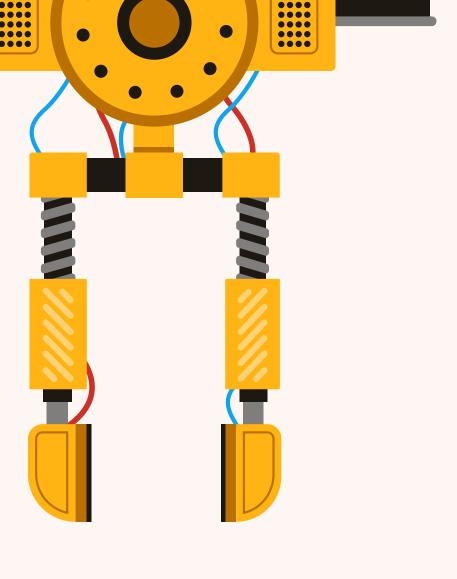


Рис. 6.6. Функциональная схема системы управления с переменной структурой для одной степени подвижности копирующего манипулятора :ДМ - датчики моментов, СТП - самотормозящая передача, ЛБ - логический блок, КЭ - коммутирующий элемент.

Особенности управления человеком-оператором средствами передвижения

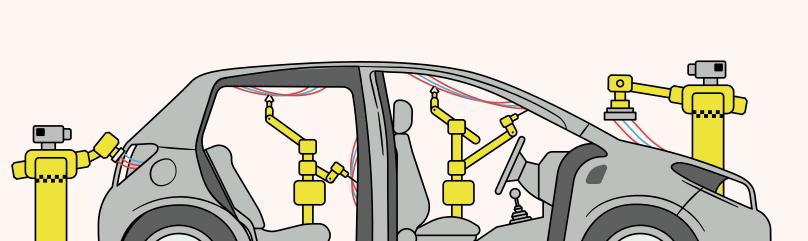
При рассмотрении систем управления в качестве основного объекта управления исследовались прежде всего манипуляционная система. Остановимся теперь на особенностях применения описанных способов и систем управления со стороны человека-оператора для управления средствами передвижения роботов. Общая функциональная схема управления движением мобильного робота с участием человека-оператора была описана в § 5.3 Из рассмотренных способов управления оператором для управления передвижением робота не применяются только системы копирующего управления, поскольку они основаны на использовании кинематики манипуляторов. Командное управление приводами, в данном случае приводами колес шасси, применяется для выполнения дискретных команд "вперед — назад", "влево — вправо" с дискретным заданием скорости движения и "стоп". Кроме того, такое же управление используется для подвижных, обычно двухстепенных, передающих телевизионных камер обзора местности, локаторов и различного навесного оборудования, которым может быть оснащено шасси робота. Управление с помощью задающей рукоятки — сегодня основной способ дистанционного управления (по кабелю или радио)мобильными роботами, который как транспортная операция осуществляется в режиме управления по скорости.

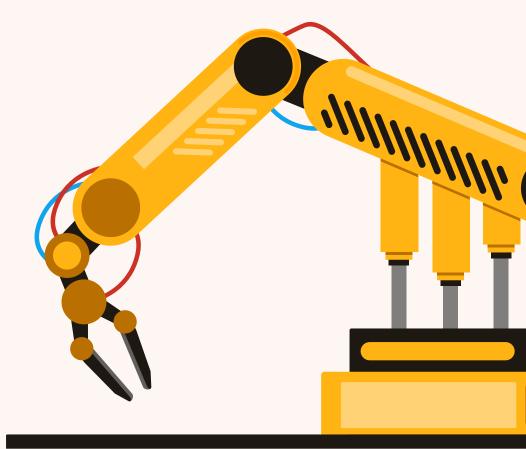






Рис. 6.7. Функциональная схема системы управления с задающей рукояткой (ЗР)



- •Что представляет собой система человек-оператор робот, и каковы основные принципы её функционирования?
- •Какие типы интерфейсов используются для взаимодействия оператора с робототехнической системой, и каковы их особенности?
- •Как распределяются функции между человеком-оператором и автоматическими подсистемами в гибридных системах управления роботами?
- •Какие методы обратной связи применяются в системах управления роботами для обеспечения точности и безопасности операций?
- •Как факторы человеческого восприятия и реакции (время отклика, когнитивная нагрузка и др.) влияют на эффективность управления робототехническими средствами?





Спасибо за внимание!

