Лекция 5. Органическое вещество и микроэлементы в водах нефтегазоносных бассейнов

Гидрогеологические исследования на месторождениях углеводородного сырья

Тілеуберді Нұрбол,

Ассоц. профессор кафедры ГИиНГГ

e-mail: n.tileuberdi@satbayev.university

Дополнительная литература для подготовки:

- 1. Нефтегазовая гидрогеология. Карцев А.А., Вагин С.Б., Шугрин В.П. Москва, «Недра», 1992. https://www.geokniga.org/books/10665
- 2. Нефтегазовая гидрогеология. Матусевич В.М., Ковяткина Л.А. Часть 1. Тюмень, ТюмГНГУ, 2010. https://www.geokniga.org/books/15630

Органическое вещество и микроэлементы в водах нефтегазоносных бассейнов

Водорастворенное органическое вещество (ВРОВ)

- > Органические кислоты
- Фенолы
- Ароматические углеводороды

Микроэлементы

- Изучение водорастворенного органического вещества (BPOB) и микроэлементов важнейшее направление органической гидрогеохимии
- BPOB и микроэлементы чуткие индикаторы процессов литогенеза на всех его стадиях, они четко фиксируют нефтегазоносность, трассируют пути миграции углеводородов и т.д.
- Органическое вещество содержится во всех природных водах от атмосферных осадков до глубоких горизонтов литосферы

Общие сведения об элементном составе ВРОВ

Основные элементы			Содержание, %			
органического вещест-			минимальное	максимальное		
ва						
	С		44,50	87,54		
	Η		5,50	13,66		
	О		9,11	49,30		
N			1,09	15,00		
S			0,00	2,40		

Основные элементы ВРОВ – углерод, водород и кислород

Ориентировочное содержание ВРОВ

BPOB	Содержание, мг/л			
Азотсодержащие вещества (по N_{opr})	0,1-1			
Фосфорсодержащие вещества (по Рорг)	0,01-1			
Нафтеновые вещества	0,01-100			
Жирные кислоты	0,001-1000			
Фенолы	0,1-10			
Бензол	0,1-10			
Толуол	0,1-10			
Аминокислоты (по N _{орг})	0,00001-0,001			
Амины	0,00001-0,0001			
Битум (хлороформный экстракт)	0,1-100			

Основную роль BPOB составляют вещества класса органических кислот (карбоновые, нафтеновые и др.), значительно меньшую концентрацию имеют ароматические углеводороды (бензол, толуол) и фенолы

- В нефтегазоносных бассейнах главными источниками ВРОВ являются рассеянное органическое вещество пород, а также залежи нефтей и газоконденсатов
- Рассеянное органическое вещество пород водоносных комплексов формирует фон (региональный и локальный)
- Залежи нефтей и конденсатов формируют аномалии (водные ореолы рассеяния органического вещества)

- Первичное обогащение вод органическим веществом и его дальнейшая трансформация происходят в результате сложного комплекса физико-химических и биохимических процессов
- Все эти процессы протекают в различных геолого-геохимических условиях, по-разному способствующих обогащению вод органическим веществом

Сюда относятся гидрогеотермический режим, степень закрытости водоносных комплексов (водообмен), анаэробность среды, минерализация, ионно-солевой состав вод, величина рН и др.

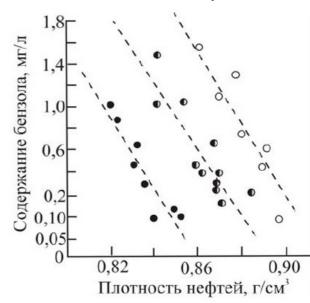
• Влияние отмеченных факторов находит свое отражение в распределении различных компонентов ВРОВ в нефтегазоносных бассейнах

Общая тенденция – усложнение и концентрирование BPOB по мере углубления водоносных комплексов

Распределение органических кислот

- Водорастворенные органические кислоты отражают региональные процессы «созревания» рассеянного органического вещества и нефтеобразования и потому встречаются повсеместно на этих участках
- В нефтегазоносных бассейнах, приуроченных к древним платформам, максимальная концентрация органических кислот достигает 1 г/л, в то время как для молодых платформ ее величины часто превышают 1 г/л, достигая 8 г/л (Западная Сибирь)
- Наиболее высокое содержание органических кислот прямо связано с количеством рассеянного органического вещества осадочных пород
- По концентрации органических кислот выделяется геохимическая граница потенциально нефтегазоносных земель
- Концентрация органических кислот дифференцируется в зависимости от минерализации и состава вод:
 - ✓ в жестких хлоридных кальциево-натриевых рассолах она меньше (до 0,3 г/л),
 - ✓ в маломинерализованных хлоридно-гидрокарбонатных натриевых водах с повышенной величиной рН она максимальна (например, в Уренгое 8,7 г/л)

Распределение органических кислот


- В распределении органических кислот по разрезу наблюдается <u>связь со</u> <u>стадийностью нефтеобразования</u>. максимум их концентрации совпадает с интервалами проявления главной зоны нефтеобразования, глубже которых содержание органических кислот в водах начинает убывать
- Дифференциация концентрации водо-растворенных органических кислот отмечается и в зависимости от характера углеводородных флюидов:
 - ✓ максимальная отмечена в водах, сопутствующих легким нефтям и газоконденсатам
 - ✓ минимальная в водах, подпирающих залежи чисто метанового газа, имеющего аквагенную природу

Распределение фенолов

- В водах нефтяных месторождений содержание фенолов увеличивается в десяткисотни раз по сравнению с водами источников и грязевых вулканов, а экспериментами установлено, что основным поставщиком фенолов в воду являются легкие нефти (в воду из легких нефтей переходит до 8 мг/л фенолов)
- Концентрация фенолов повышается в гидрокарбонатно-хлоридных водах вне залежей нефти, возникает резкий скачок содержания на контактах с легкими нефтями, обогащенными ароматическими компонентами, и с газоконденсатами
- Наименьшая концентрация фенолов обнаруживается на контакте с тяжелыми нефтями (0,68 мг/л), наибольшая – на контакте с легкими, обогащенными ароматическими углеводородами (8-20 мг/л)
- Определения концентрации фенолов широко используются при прогнозировании нефтегазоносности, главным образом при оценке продуктивности локальных структур и интервалов разреза

Распределение ароматических углеводородов

- В настоящее время различными методами в водах достаточно уверенно определяют моноядерные ароматические углеводороды (С₆-С₈). Наиболее полные материалы по распределению в водах нефтегазоносных бассейнов получены для бензола (С₆Н₆)
- Практически во всех нефтегазоносных бассейнах страны бензол встречается только в водах, связанных с нефтегазоносными отложениями
- Установлено, что содержание бензола имеет обратную связь с плотностью нефтей:
- Концентрация бензола не зависит от содержания гидрокарбонат-иона в водах; повышение минерализации вод приводит к снижению содержания бензола
- Содержание бензола в приконтурных водах зависит от содержания его в нефтях, максимальные количества установлены в водах легких нефтей и газоконденсатов

Распределение ароматических углеводородов

- Содержания толуола и бензола в водах одного порядка, однако довольно часты случаи превышения концентраций толуола (C_7H_8)
- В водах Ярегского нефтяного месторождения (Тимано-Печорский бассейн), представленного тяжелыми (плотность 0,93-0,95 г/см) нафтено-ароматическими нефтями, наблюдается постоянное преобладание толуола над бензолом. Максимальное содержание толуола 1,59 мг/л, бензола 0,97 мг/л
- Характерным для толуола является обнаружение его только в непосредственной близости от залежи,
 в ореольной же части, где бензол встречается в повышенных концентрациях (0,12 мг/л), толуол не
 обнаруживается
- Толуол менее стоек в растворе по сравнению с бензолом. Более высокая концентрация толуола в водах вполне правомерна, поскольку при одинаковой растворимости в воде бензола и толуола содержание гомологов бензола в нефтях и газовых конденсатах значительно выше, чем самого бензола
- Остальные гомологи бензола еще слабо изучены

В целом ароматические углеводороды представляют собой весьма важную группу ВРОВ, которая широко используется в качестве надежных показателей наличия залежей и при прогнозировании характера углеводородных флюидов

Распределение микроэлементов

- К микроэлементам традиционно относят большой комплекс химических элементов, содержание которых в природных водах составляет миллиграммы и микрограммы на 1 л (йод, бром, бор, литий, рубидий, цезий, ванадий, никель, хром, свинец, медь, серебро, ртуть и др.)
- Во всех нефтегазоносных бассейнах, где определялись микроэлементы в водах, получены данные о значительном превышении концентрации многих из них по отношению к водам мирового океана.
 Это позволяет считать природу многих микроэлементов в водах литогенной

	Мировой океан			Воды Западно-		Степень
Микроэлемент	по Д. Грийну <i>а</i>	по В. Мейзону б	Сибирского мегабассейна 6		кон- центриро- вания в/(а или б)	
Фосфор	10-100	60		488		4,9–50
Cepa	9.10^{5}	$8,8 \cdot 10^{5}$		$3,2\cdot10^{3}$		0,0035
Ванадий	0,3	0,3		9,8		32,6
Хром	Нет данных	0,07		6,2		89
Марганец	1–10	5,5		870		158-870
Кобальт	0,1	0,1		8,4		84
Никель	0,1-4,5	0,3		44,9		89-449
Медь	1,4	4,5		11,7		2,6-8,3
Цинк	5,1	10		502		50-98
Молибден	Нет данных	1,2		6,2		5,1
Серебро	0,15-0,3	0,25		2,2		7,3–14,7
Барий	50	50		85·10 ⁴		$1,3-10^4$
Ртуть	0,33	0,3		21,6		720-7200
Свинец	4	4,5		6,4		1,5

Средние содержания микроэлементов в водах Западно-Сибирского нефтегазоносного мегабассейна и Мирового океана, мкг/л

Распределение микроэлементов

- Источники микроэлементов в водах нефтегазоносных бассейнов разнообразны это исходные воды морских бассейнов осадконакопления, осадочные породы, живое и фоссилизированное органическое вещество, готовые нефти в залежах
- К началу нефтегазообразования и нефтегазонакопления создаются благоприятные условия для накопления в водах микроэлементов и их миграции в литосферных водах бассейнов
- Особенно активизируются процессы массопереноса вещества в водах в геотермозонах, соответствующих главной стадии нефтеобразования, когда происходит одновременная глубокая трансформация и минеральной и органической составляющих осадочных отложений бассейнов
- Это хорошо иллюстрируется закономерностями распределения металлов в водах различных нефтегазоносных бассейнов

Распределение микроэлементов

- Региональная закономерность в распределении микроэлементов повышение их содержания в водах с глубиной
- В нефтегазоносных бассейнах температура по разрезу отложений изменяется в пределах (без учета локальных аномалий) от 20-30 до 120-180 °C. В соответствии с этим наблюдается и увеличение концентраций микроэлементов в водах

Микроэлементы	Температура, °С				
1	50	50-80	80-100	100-120	
Ванадий	1,3	10,9	22,4	32,3	
Марганец	278,0	333,0	841,0	1113,0	
Кобальт	3,4	7,9	12,1	36,9	
Никель	24,5	25,0	97,2	115,5	
Медь	1,1	12,1	37,6	98,2	
Цинк	53,1	267,4	807,7	1060,0	
Германий	Не обн.	3,2	6,6	15,8	
Молибден	Не обн.	7,0	12,7	12,2	
Серебро	0,5	1,4	2,5	Не обн.	
Олово	1,8	1,3	1,0	1,7	
Ртуть	Не обн.	5,2	6,8	Не обн.	
Свинец	1,1	8,3	11,8	10,5	

