Лекция 9. Основы гидрогеотермии. Полезные воды и техногенез в недрах

Гидрогеологические исследования на месторождениях углеводородного сырья

Тілеуберді Нұрбол, Ассоц. профессор кафедры ГИиНГГ e-mail: <u>n.tileuberdi@satbayev.university</u>

- Основы гидрогеотермии
- Гидроминеральные ресурсы нефтегазоносных бассейнов:
 - 1) Конденсационные воды
 - 2) Воды, насыщенные углеводородными газами
 - 3) Промышленные воды
 - 4) Минеральные воды и рассолы лечебного значения
 - 5) Пресные воды, пригодные для бытового, промышленного и сельскохозяйственного водоснабжения
 - 6) Термальные воды
- Гидрогеологические аспекты техногенеза

Гидрогеотермия — раздел гидрогеологии, посвященный изучению закономерностей теплопереноса и теплообмена в водоносных толщах литосферы

Гидрогеотермические исследования позволяют оценить роль природных вод в формировании и распределении теплового поля, то есть участие вод в термическом режиме Земли

Знание температур водных растворов литосферы позволяет использовать воды

- в энергетических и лечебных целях
- при оценке перспектив нефтегазоносности недр
- при поисках, разведке и разработке залежей УВ

- Источники тепловой энергии, определяющие тепловой режим подземных вод:
 - Внешние (космические) солнечная радиация
 - Внутренние (планетарные) радиогенная энергия, выделяющаяся в результате распада радиоактивных элементов (урана, тория и др.)
- В литосфере теплоперенос осуществляется главным образом за счет теплопроводности и конвекции
- Среди осадочных пород наибольшей теплопроводностью обладают каменная соль, ангидрит, наименьшей – глины. Песчаники, алевролиты, известняки и доломиты характеризуются средней теплопроводностью
- Минимальной теплопроводностью обладает глинистый цемент, максимальной кварцевый
- У Существенное влияние на величину теплопроводности оказывает влагонасыщенность: у сухих пород она ниже, чем у водонасыщенных.
 - Понижается теплопроводность и в нефтенасыщенных породах

- Под конвекцией понимается передача теплоты в горных породах движущимся потоком подземных вод
- При увеличении скорости фильтрационного потока, тепловое воздействие вод пропорционально возрастает
- Основными геотермическими параметрами при изучении теплового режима литосферных вод являются геотермический градиент и геотермическая ступень

Геотермический градиент — прирост температуры на единицу глубины:

$$\Gamma = (t_2 - t_1) / (h_2 - h_1)$$

 t_1 , t_2 — температуры пород, определенные на глубинах соответственно h_1 и h_2

Обычно геотермический градиент относят к интервалу глубин 100 м, в этом случае он выражается в °C/100 м

Геотермическая ступень – расстояние по вертикали, на протяжении которого температура изменяется на 1 °C:

$$G=(h_2-h_1)/(t_2-t_1)$$

Геотермический градиент, отнесенный к интервалу 100 м, и геотермическая ступень связаны соотношением:

$$\Gamma_{100} = 100/G$$

В вертикальном разрезе земной коры имеет место геотермическая зональность Большинство исследователей выделяют две зоны:

Гелиотермозона: включает верхнюю оболочку земной коры, в пределах которой гидрогеотермический режим формируется под воздействием солнечной радиации

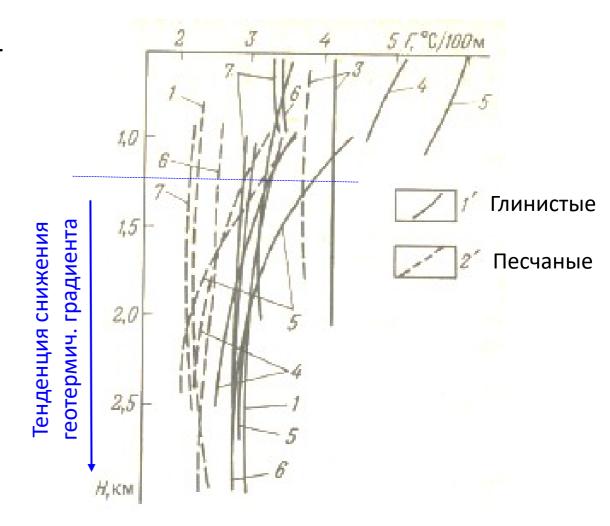
Геотермозона: включает нижние слои земной коры и верхнюю мантию; гидрогеотермический режим в пределах геотермозоны зависит от эндогенных источников тепла

Температура подземных вод нефтегазоносных бассейнов изменяется в широких пределах: от отрицательных значений в области развития криолитозоны до нескольких сот градусов в наиболее погруженных частях осадочных бассейнов и прогибов.

Величины геотермических градиентов в нефтегазоносных регионах

- Величины геотермического градиента в осадочном чехле разновозрастных структур изменяются в широком диапазоне.
- Наибольшие величины
 геотермического градиента
 фиксируются в Восточном
 Предкавказье в Терско-Каспийском
 прогибе до 5 °C /100 м.

Регион, структура	Интернал глубин, км	Г, °С/100 м	Исследователи
Печорская синеклиза	0,5 - 2,5	2.7	Г.Н. Богданов, Д.И. Дья- конов и др.
Волго-Уральская неф- тегазоносная провин- ция	0,5 - 2,5	0.7 - 2.9	Д.И.Дьяконов, Б.Г. Поляк. В.А. Покровский и др.
Днепровско-Донецкая впадина	0,5 - 3,5	1,4 - 3.5	М.Ф. Беляков, А.Е. Бабинец Е.А. Любимова и др.
Припятский прогиб	0.5 - 3	1 - 2,4	М.Ф. Беляков, Г.В. Богомо- лов и др.
Прикаспийская мега- синеклиза	0.5 – 3	0.5 - 3.7	В.С. Жеваго и др.
Центральное Предкав- казье	≤ 3.5	3 - 4,4	В.Н. Корценштейн, Ф.А. Ма- каренко, М.В. Мирошников, А.И. Хребтов
Восточное Предкав- казье (Терско-Кас- пийский прогиб)	≤ 2,5	3 – 5 (в ано- мали- ях 8 ÷ ÷9)	Г.М. Сухарев, В.Н. Николаев
Бухаро-Хивинский район	≤ 2	2 - 4	В.Н. Корценштейн
Южно-Мангыцілакс- кая впадина	≤ 2.5	3 - 4,5	В.Н. Корценцітейн, В.С. Жевго
Сурхан-Дарьинская впадина	≤ 2,0	$\frac{3.75}{2-4}$	Б.А. Бедер, В.Н. Крат и др.
Куринская впадина	≤ 2,5	3 - 4	Д.В. Голубятников, М.А. Аб рамович, С.А. Алиев и др.
Рионская впадина	≤ 3,0	2,2 - 3	Д.И. Дъяконов, И.М. Буачид и др.
Западно-Сибирская мегасинеклиза	≤ 3.5	2,7 - 4	Б.Ф. Маврицкий


- Величины геотермических градиентов зависят от многих факторов, прежде всего от термических свойств горных пород (теплопроводности), а также от их состава, водонасыщенности и т.п.
- Геотермические градиенты песчаных и глинистых пород различны
- Ниже уровня 1,2 км отмечается тенденция снижения геотермического градиента
- Температура на заданной глубине в однородных по теплофизическим свойствам породах определяется по формуле

$$t_H = t_1 + \Gamma_{cp} (H - H_0)$$

 t_1 – фактическая температура на глубине замера H_0

Н – заданная глубина экстраполяции

Г_{ср} – среднее значение геотермического градиента

- В перераспределении теплоты в нефтегазоводоносных комплексах пластовые воды играют существенную роль
- При движении вод от областей питания через прогибы в направлении платформ в водоносных комплексах происходит перераспределение тепловой энергии
- Наличие тектонических нарушений (преимущественно проводящих) способствует проникновению в вышезалегающие водоносные толщи вод с повышенной температурой и образованию гидрогеотермических аномалий

Количество теплоты, привносимое водным потоком, оценивается исходя из уравнения теплового баланса:

$$Q=Q_1+Q_2+Q_3$$

Q – избыток тепловой энергии, привносимый подземным потоком

 Q_1 , Q_2 — количество теплоты, соответственно приобретенное в зоне максимального прогрева и заключенное в потоке после прохождения им изучаемого участка

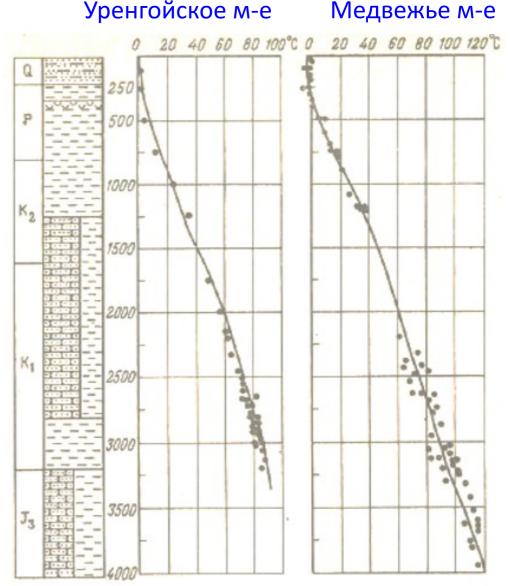
 Q_3 — потеря тепловой энергии потоком за счет радиации при движении от зоны максимального прогрева до изучаемого участка

$$Q_3 = (\lambda(t_2 - t_1)/I)S\tau$$

 (t_2-t_1) — перепад температур от нагретого слоя до поверхности

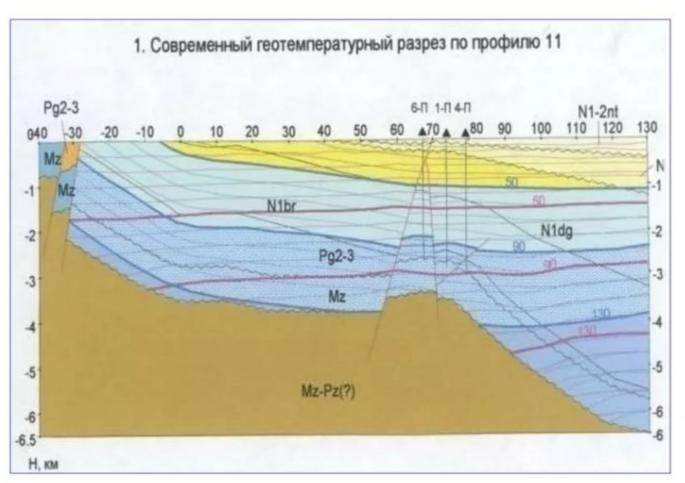
 λ – коэффициент теплопроводности перекрывающей толщи

I – мощность перекрывающей толщи


S – площадь, для которой рассчитывается потеря теплоты

 τ – время

- Исходным материалом для


 гидрогеотермических исследований служат
 замеры температуры в скважинах,
 проводимые электрическими и ртутными
 термометрами
- На основе обработки полученных данных строятся гидрогеотермические разрезы, отражающие закономерности распределения температур на нефтяных и газовых месторождениях

Распределение температур в продуктивных частях разреза

Естественное тепловое поля. Профили геоизотерм.

Составляются карты геоизотерм, картысрезы, на которых показаны изменения температур на определенных гипсометрических отметках, карты геотермических параметров, гидрогеотермические профильные разрезы:

- Получаемые гидрогеотермические данные широко используются при решении вопросов нефтегазовой геологии
- Сведения о геотермическом режиме недр позволяют судить о процессах нефтегазообразования и нефтегазонакопления в осадочной толще земной коры, поскольку температурные условия оказывают решающее влияние на степень преобразования ОВ, на фазовое состояние УВ и их миграционные свойства
- Температура существенно влияет на свойства флюидов воды, нефти, газа
- Учет этих свойств, характерных для пластовых и поверхностных условий, необходим при подсчете запасов нефти и газа и при разработке нефтяных и газовых месторождений
- В последнее время геотермические исследования проводятся при геологическом картировании и выявлении нефтегазоносных структур не только на континенте, но и в пределах шельфовых зон
- В комплексе с электроразведочными, радиометрическими и геохимическими исследованиями геотермический метод позволяет существенно повысить эффективность геологоразведочных работ на нефть и газ

Гидроминеральные ресурсы нефтегазоносных бассейнов

В недрах нефтегазоносных бассейнов (НГБ) содержатся огромные запасы гидроминерального сырья, которые могут использоваться в хозяйственной деятельности:

- 1) Конденсационные воды
- 2) Воды, насыщенные углеводородными газами
- 3) Промышленные воды
- 4) Минеральные воды и рассолы лечебного значения
- 5) Пресные воды, пригодные для бытового, промышленного и сельскохозяйственного водоснабжения
- 6) Термальные воды

Гидроминеральные ресурсы нефтегазоносных бассейнов Конденсационные воды

• Пластовые конденсационные воды

Конденсационные — получаемые попутно из недр с углеводородными газами (из 1м³ газа выделяется 28-53 г воды)

Солюционные – выделившиеся из нефти (из 1м³ нефти выделяется до 0,01 м³ воды)

- ➤ Конденсационные и солюционные воды имеют низкую минерализацию 1 г/л и менее,
- Относительно обогащены гидрокарбонат-ионом, диоксидом углерода, летучими ОВ и микроэлементами (ртуть, сурьма, сера),
- У Из растворенных солей в них преобладают хлориды и бикарбонаты натрия
- Минерализация и состав конденсационных водных растворов определяется:
 - Термобарическими условиями растворения подземных вод в углеводородах и
 - Условиями последующей сегрегации газовых и жидких растворов

• Техногенные конденсационные воды

Конденсирующиеся из парогазовой смеси при эксплуатации скважин – так же имеют большое значение (как и природные)

Гидроминеральные ресурсы нефтегазоносных бассейнов Воды, насыщенные углеводородными газами

Объем растворенных газов в пластовых водах нефтегазоносных бассейнов

- В пластовых водах НГБ содержится огромное количество растворенных углеводородных газов
- Содержание растворенных газов в водах отдельных бассейнов изменяется в широких пределах и зависит от
 - ✓ мощности и коллекторских свойств водовмещающих толщ
 - ✓ интенсивности генерации и рассеяния УВ
 - ✓ газоемкости пластовых вод

Регион	Нефтегазоносные бассейны	Объем газов, трлн. м ³	
Восточно-	Прибалтийский	0,01	
Европейская плат-	Львовский	17	
форма	Тимано-Печорский	280	
	Прикаспийский	980	
	Волго-Уральский	140	
Сибирская платфор-	Ангаро-Ленский	32	
ма	Тунгусский	167	
	Приверхоянско-Вилюйский	355	
Западно-Сибирская	Западно-Сибирский	1000	
геосинеклиза			
Скифская и Туран-	Азово-Кубанский	180	
ская плиты	Среднекаспийский	259	
	Южно-Каспийский	120*	
Туранская плита	Кызылкумский	86	
	Каракумский		
	(совместно с Устюртским)		

^{*} рассчитано только для продуктивной толщи

Гидроминеральные ресурсы нефтегазоносных бассейнов Промышленные подземные воды и рассолы

Особенности литосферных водных растворов (рассолов) как источников ряда металлов (в первую очередь в НГБ):

- большие запасы сырья
- отсутствие затрат на горные работы (часто используют уже пробуренные для других целей скважины)
- возможность получения продукции с больших глубин и с большей площади;
- комплексность полезного ископаемого

Содержание некоторых ценных элементов, мг/кг, в подземных водах

Элемент	Содержан в литосферных	Наиболее распро-	
	максимальное	минимальное, представляющее промышленный интерес	страненное содержание элементов в хлоридных рассолах НГБ Русской плиты
Литий	500	10	5-20 (до 1000)
Калий	40000	1000	500-3000
Рубидий	200	3	1-5 (до 200)
Цезий	20	0,5	0,1-0,5 (до 20)
Стронций	30000	300	200-2000
Бром	10000	300	150-2000
Йод	1000	10	5-20

- возможность попутного получения ряда солей (хлориды натрия, калия, магния, кальция и др.)
- возможность использования водных ресурсов отходов действующих производств (нефтегазодобывающего, йодо-бромного, калийного и др.
- возможность получения электролитически чистых металлов, особенно сверхредких

Гидроминеральные ресурсы нефтегазоносных бассейнов

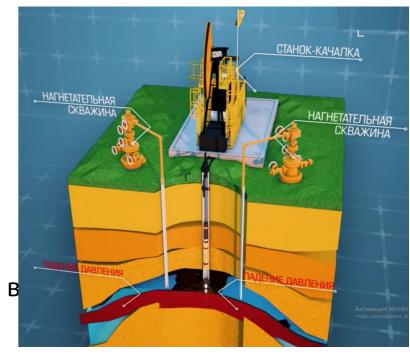
Минеральные лечебные подземные воды и рассолы

Практически все воды и рассолы в нефтегазоносных пластах обладают лечебными свойствами

БОльшая часть их ресурсов сосредоточена именно в НГБ, хотя в них представлены далеко не все типы этих вод

Для нефтяных и газовых месторождений характерны следующие **типы** подземных минеральных лечебных вод:

- Метановые и азотно-метановые минерализованные воды морских отложений (подтипы – нафталанский, охинский, майкопский)
- Воды и рассолы засоленных осадочных пород (подтипы ишим-байский, зевардинский)
- Сульфидные воды и рассолы (подтипы кзылмуштукский, каякентский, краснокамский, балыхтинский)


Характеристика йодистых, йодисто-бромистых и бромистых минеральных вод и рассолов в нефтегазоносных районах

Подгруппа	Тип	Содержание биоактив- ных компо- нентов, мг/л	Минерализа- ция, г/л	Районы
Йодистая	Сиазанский	25-55	5-35	Афруджа
Йодисто- бромистая	Нафталанский Тюменский Хадыженский Майкопский			Нафталан Тобольск Сургут Челекен Хыдырлы
Бромистая	Устькачкин-	700-850	150	Красно-
	ский			камск

• Существуют также йодистые, бромистые, радиевые и некоторые другие специфические виды минеральных лечебных вод и рассолов, характерных для нефтяных и газовых месторождений

Гидроминеральные ресурсы нефтегазоносных бассейнов **Пресные подземные воды**

- Пресные подземные воды являются ценнейшим полезным ископаемым
- Обычно встречаются в разрезах НГБ выше продуктивных горизонтов
- Доля пресных вод, получаемых из земных недр, в общем водопотреблении в последнее время неуклонно растет, и это при очень большом росте всего водопотребления. Такое положение объясняется, прежде всего, опережающим загрязнением поверхностных речных и озерных вод, а также в связи с использованием пресных подземных вод в системах поддержания пластового давления на нефтепромыслах (ППД)

- Более половины городов нашей страны в качестве основного источника водоснабжения используют подземную воду. Во многих других странах роль недр в водоснабжении еще больше (в Дании, например, 100%)
- Ввиду исключительной ценности пресных вод важной задачей является использование этих вод при освоении нефтегазоносных бассейнов

К термальным обычно относят воды с температурой выше 20 °С, которая составляет максимальную среднегодовую температуру воздуха на земном шаре. В гидрогеологии широко распространена классификация, в которой выделяются три группы вод:

- > Холодные. Выделяются следующие подгруппы с температурой, °C:
 - <0 переохлажденные
 - 0-10 очень холодные
 - 10-20 холодные
- > Низкотермальные. Выделяются следующие подгруппы с температурой, °C:
 - 20-37 теплые
 - 37-50 горячие
- **Высокотермальные**. Выделяются следующие подгруппы с температурой, °C:
 - 50-100 очень горячие
 - >100 перегретые

- Термальные воды имеют как лечебное, так и энергетическое значение
- Лечебные свойства термальных вод нефтяных и газовых месторождений определяются преимущественно высокой минерализацией, содержанием в них различных химических элементов и составом водорастворенных газов (углекислота, сероводород, азот и т.п.)
- В ряде случаев воды нефтяных и газовых месторождений обогащены йодом, бромом, железом, а также различными микроэлементами, имеющими бальнеологическое значение
- Нередко термальные воды содержат в достаточно высоких концентрациях различные элементы, например, литий, рубидий, цезий, мышьяк и в случае их высоких концентраций могут рассматриваться как жидкие руды
- Запасы геотермальной энергии в пределах земного шара огромны и составляют в океанах и на континентах 2900·10¹⁰ Вт

Для нефтегазовой гидрогеологии наибольший интерес представляют термальные воды гидрогеологических бассейнов, содержащих залежи УВ

С теплоэнергетических позиций термальные воды подразделяются на

- Низкопотенциальные (t<70 °C)
- Среднепотенциальные (t=70-100 °C)
- Высокопотенциальные (t>100 °C)

Генетическая классификация термальных вод нефтегазоносных бассейнов

		Максимальная		
Бассейны	Минимальная температура	минерализа-	Типичные	
Вассеины	(определена в скважинах), °С	ция	месторождения	
		вод, г/л		
межгор-	до 100 в палеозое,		Челекенское	
ных	до 200 в мезозое-кайнозое	350		
впадин				
краевых	до 100 в палеозое,	300	Махачкалинское,	
прогибов	до 200 в мезозое-кайнозое		Майкопское	
платформ	до 75 (реже более 75) в палео-			
	30e,	450	Омское	
	до 180 в мезозое-кайнозое			

- Для использования термальных вод в качестве источника тепловой энергии важно знание тепловой и энергетической мощности их месторождений, т.е. количества теплоты или электроэнергии, которое можно получить при их эксплуатации
- Наибольшей тепловой и энергетической мощностью характеризуются месторождения термальных вод в районах современного вулканизма
- К наиболее перспективным месторождениям пластового типа следует относить такие, геотермический градиент которых не ниже 3 °С/100 м. В таких случаях можно получить воду с температурой 100 °С и выше с глубин менее 2,5-3 км

Оценка потенциальных эксплуатационных запасов термальных вод по России и СНГ применительно к двум методам эксплуатации скважин — фонтанному и насосному:

 На ближайшую перспективу освоение пластовых термальных вод нефтегазоносных бассейнов должно вестись в первую очередь в пределах южных районов Западной Сибири, Предкавказья, Азербайджана, Сахалина

В нефтегазоносных бассейнах

Бассейны	Водоносные комплексы	Группа вод		Запасы вод м ³ /сут, при способе эксплуатации	
		по темпе- ратуре, °C	по мине- рализа- ции, °C	фонтан- ном	насос-
Южно-	от Майкопского до Апшеронского	70	<35	28	434
Каспийский,		70	>35	-	18
западная часть		70-100	<35	15,5	133
(Азербайджан)		70-100	>35	41,5	319
(Азероаиджан)		100	>35	5	58
Средие	Миоценовые и Нижнемеловые	70	<35	29	189
Средне- Каспийский (западная часть)		70-100	<35	27	285
		70-100	>35	44	425
		100	>35	129	707
Западно- Сибирский	Альб- сеноманский	70	<35	129	13500
	Неокомский	70-100	<35	130	1867
Сахалинский	Неогеновый	60-70	<20	9	335

Гидрогеологические аспекты техногенеза

Под техногенными процессами следует понимать совокупность тесно связанных между собой и обусловливающих друг друга гидрогеологических и инженерногеологических процессов, проявляющихся особенно интенсивно при водохозяйственной деятельности человека и определяющих изменение геологической и окружающей среды в целом

Наиболее интенсивно техногенные гидрогеологические процессы проявляются:

- при эксплуатации обводнительных объектов на орошаемых землях, в сфере влияния ирригационных и транспортных каналов, равнинных водохранилищ, на нефтяных месторождениях при их заводнении и т. д.
- при эксплуатации осушительных объектов на площади осушения заболоченных территорий, при горных разработках, работе подземных городских сооружений, в сфере влияния водозаборов и т. п.

Гидрогеологические аспекты техногенеза

По условиям формирования тепломассообмена можно выделить три типа техногенных процессов (такое разделение особенно существенно с точки зрения влияния техногенеза на гидрогеологическую обстановку):

- инжекционные привнос вещества в литосферу; вещество представлено в основном водными растворами. Заболачивание и подтопление территорий, прилегающих к ирригационным и гидротехническим сооружениям; опреснение минерализованных литосферных вод; загрязнение литосферных вод; межпластовые перетоки и грифонообразования; землетрясения
- эжекционные изъятие вещества из литосферы; вещество представлено водными растворами, твердым веществом пород, газами, нефтью, однако важно, что при изъятии других веществ практически всегда происходит и извлечение вод. Истощение запасов литосферных вод; просадки и провалы земной поверхности; засолонение и опреснение (вод, почв и т. п.), межпластовые перетоки и т. д.
- сложные техногенные процессы, совмещающие привнос и изъятие вещества литосферы, в том числе вод; разделение массопереноса по направлениям происходит в условиях взаимодействия обводнительных и осушительных объектов

Гидрогеологические аспекты техногенеза

Большое значение приобретает прогнозная оценка возможного развития техногенных процессов и на ее основе – проектирование профилактических мер

