МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И.САТПАЕВА

Институт геологии и нефтегазового дела имени К. Турысова Кафедра: Геофизика

Комплексная интерпретация материалов ГИС

для специальности 7М07105 «Нефтегазовая и рудная геофизика»

Истекова С.А.,

докт. геол.-минерал. наук, проф. каф. Геофизики

ЛИТЕРАТУРА

Вендельштейн Б.Ю. Резванов Р.А. Геофизические методы определения параметров нефтегазовых коллекторов. М.: Недра,1978.	Элланский М.М. Петрофизические основы комплексной интерпретации данных геофизических исследований скважин. М.:РГУ нефти и газа им.ИМ.Губкина, 2001.
Латышова М.Г. Практическое руководство по интерпретации диаграмм геофизических методов исследования скважин. М.: Недра, 1981., 2007.	Итенберг С.С. Изучение нефтегазоносных толщ промыслово- геофизическими методами. М.: Недра, 1967
Истекова С.А., Борисенко Г.Т. «Интерпретация результатов геофизических исследований скважин на месторождениях нефти и газа. Учебное пособие (для магистрантов специальности 6М074700 «Геофизические методы поисков и разведки МПИ»)	Техническая инструкция по проведению геофизических исследований и работ на кабеле в нефтяных и газовых скважинах. М.: МЭРФ, 2001.
Борисенко Г.Т. « Комплексная интерпретация материалов ГИС». Методические указания к лабораторным работам (для магистрантов специальности 6М074700 «Геофизические методы поисков и разведки МПИ»).	Сковородников И.Г. Геофизические исследования скважин: Курс лекций Екатеринбург: УГГГА, 2003 294 с.

Физические свойства горных пород Лекция 2

Основа геофизических методов

- Выделение геологических тел среди вмещающих пород основано на том, что объекты отличаются от среды вещественным составом или физическим состоянием.
- Используется отличие объекта от вмещающей среды по физическим свойствам (плотностным. магнитным, электрическим, упругим и т.д.).
- ▶ Если объект со свойствами, отличными от свойств вмещающей среды, находится в физическом поле, то вокруг него будет наблюдаться перераспределение поля.
- В основе геофизических методов поиски и разведки лежит дифференциация горных пород и руд по физическим свойствам.

Основа геофизических методов –

существование горных пород, обладающих различными физическими свойствами вследствие:

- Различия минералогического состава
- Различия размеров зерен минералов, сортировки, характера упаковки зерен и т.д.
- Изменения формы залегания или смещения по разломам или трещинам
- Изменения пород под воздействием вторичных процессов (окисления, восстановления, обжига, механических воздействий: меняется состав скелета, цемента и т.п.)
- Влияния типа флюидонасыщения порового пространства

Наиболее важные из физических свойств горных пород

- Плотность (density)
- Электрическое сопротивление (resistivity)
- Магнитная восприимчивость и естественная намагниченность (magnetic compliance/ natural magnetism)
- Скорость распространения акустических волн (sonic velocity)

Особенность геофизики: дистанционность

Еще одна особенность: возможность площадных наблюдений требуемой плотности при полевой геофизике

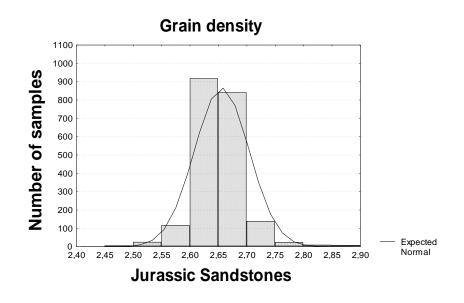
Наблюдения требуемой плотности по всему стволу скважины

плотность

Bulk density, grain density, pore fluid density, and porosity are related in the following manner:

$$\phi = \frac{\rho \, ma - \rho \, b}{\rho \, ma - \rho \, f}$$

WHERE:


 ρ ma = Grain density

 ρ b = Bulk density

 ρf = Fluid density

плотность

Гистограмма распределения плотности скелета юрских песчаников

Поле корреляции объемной плотности и пористости юрских песчаников

DENS = 2,6679 - ,0173 * **POR**

Correlation: r = -,8267

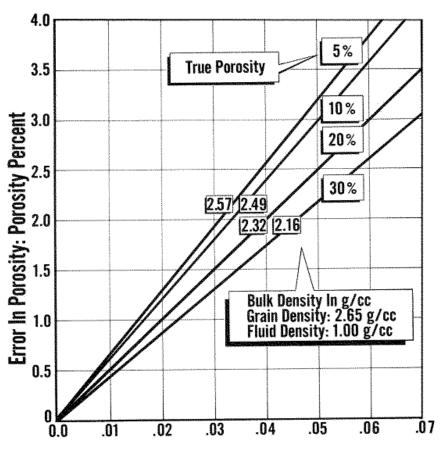
2,85

2,75

2,65

2,55

2,25


4 8 12 16 20

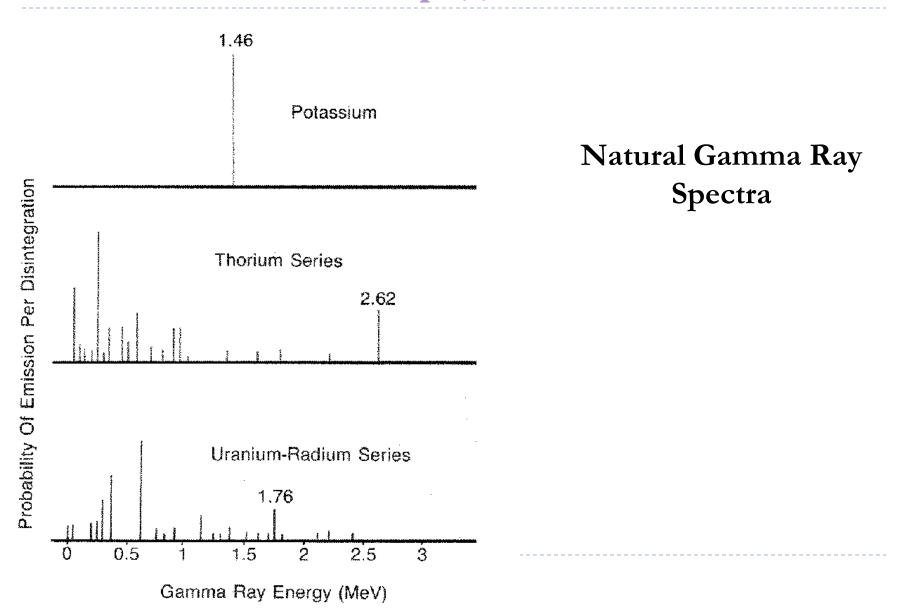
Regression 95% confid.

Porosity

плотность

Error In Assumed Grain Density: g/cc

Porosity Error vs Error In Assumed Grain Density



Физические свойства естественная радиоактивность

- ▶ Естественная радиоактивность способность горных пород к самопроизвольному испусканию гамма-квантов различной энергии за счет превращения одного изотопа в другой — радиоактивного распада
- ▶ Радиоактивность горных пород обусловлена преимущественно содержанием в них радиоактивных изотопов К⁴⁰, U²³⁸, Th²³²
- ▶ Единицы измерения радиоактивности грамм-эквивалент радия на 1 грамм породы — концентрация радиоактивных элементов в горной породе, при которой возникает гамма-излучение такой же интенсивности, как при распаде 1 г Ra (г-экв Ra/г, или пг-экв Ra/г). 1 пг-экв Ra/г = 10⁻¹² г-экв Ra/г = 16.5 API
- Измерение интегральной радиоактивности радиометрия, гаммакаротаж, измерение концентраций основных радиоактивных элементов – гамма-спектрометрия

естественная радиоактивность

естественная радиоактивность

Caprock and anhydrite

Coal

Salt

Dolomite

Limestone

Sandstone

Sandy limestone and

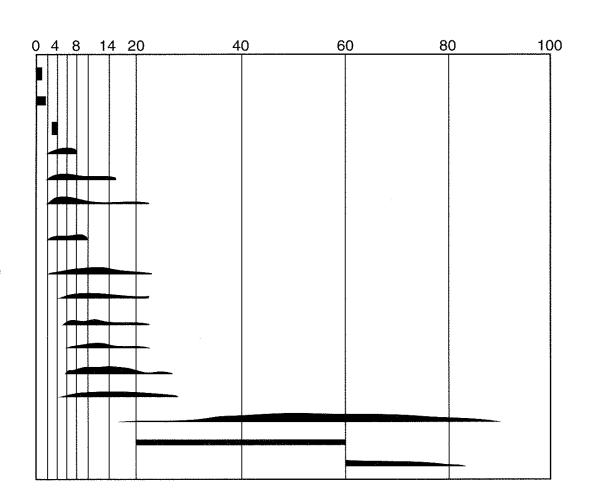
limy sandstone

Greenish-gray sandstone

Shaly sandstone

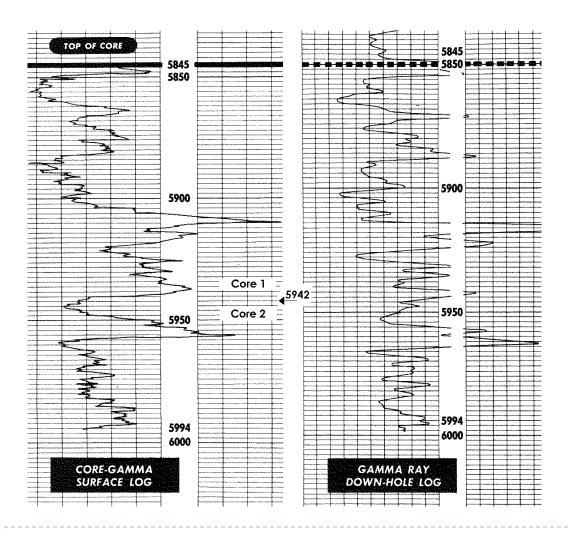
Shaly limestone

Sandy shale


Calcareous shale

Shale

Organic marine shale


Lean potash beds

Rich potash beds

естественная радиоактивность

Увязка данных керна и геофизических исследований скважин с помощью данных по радиактивности

естественная радиоактивность

Уточнение природы радиоактивности пористых пород

упругие свойства

Acoustic Properties Of Rocks

$$V_b = \sqrt{\frac{E}{\rho} \cdot \frac{(1 - \mu)}{(1 + \mu)(1 - 2\mu)}}$$

$$V_s = \sqrt{\frac{E}{\rho} \cdot \frac{1}{2(1+\mu)}}$$

Where:

 V_b = Velocity of bulk compressional waves

 V_s = Velocity of shear wave

 ρ = Density

E = Young's Modulus

 μ = Poisson's Ratio

упругие свойства

Elastic Wave Velocities in Porous Media

Скорость распространения упругих колебаний в пористой среде

The velocity of elastic waves in a porous medium is a complex

function of many of the characteristics of the medium, including:

Скорость распространения упругих колебаний в пористой среде колебаний зависит от следующих факторов

- 1. Rock composition(состав г.п.)
- **2.** Porosity(пористости)
- 3. Grain size, type and distribution

(размер зерен и их распространение)

- 4. Type and degree of cementation and lithification (состава и структуры цемента)
- 5. Pore sizes and distribution (размер пор и их распространение)
- 6. Pore fluid densities, viscosity, and saturations

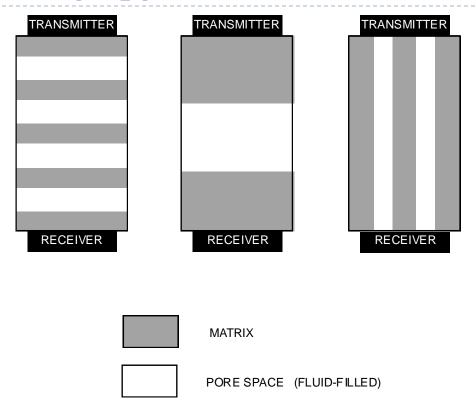
(флюидонасыщенности)

- 7. Rock skeleton pressure and pore pressure (структуры скелета г.п. и порового давления)
- 8. Bulk compressibility and other elastic properties (трещиноватостии др. упругих свойств г.п.)

Физические свойства упругие свойства

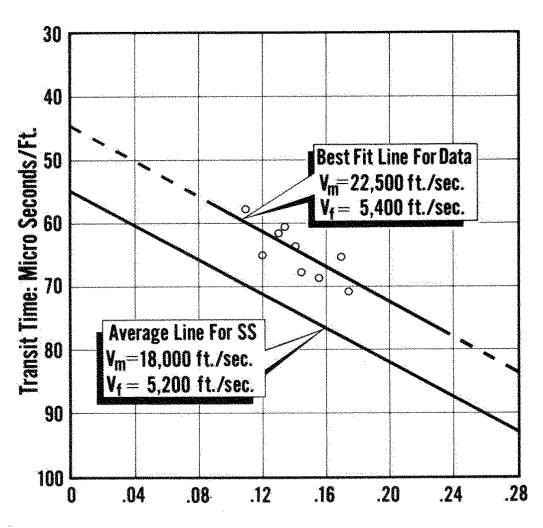
уравнение Вилли связь между пористостью и вскорости распространения упругих колебаний в среде

Relationship of Porosity and Acoustic Velocity


The Wyllie "time-average equation" for compressional waves, has been popular in the industry over many years.

$$\Delta t = \Delta t_f$$
. $\phi + \Delta t_m$ $(1 - \phi)$ or,

$$\phi = \frac{\Delta t - \Delta tm}{\Delta t_{f} - \Delta tm}$$

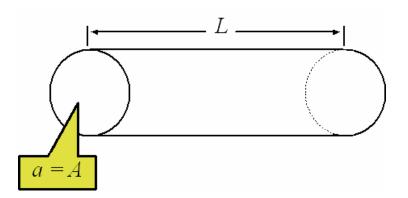

упругие свойства

Theoretical Models Relating Porosity And Transit Time

упругие свойства

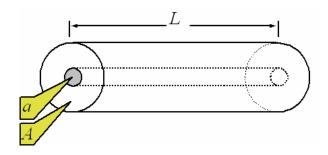
Поле корреляции времени пробега упругих волн с пористостью для песчаников

Porosity: Fraction


электрические свойства

Electrical Properties

$$r \propto \frac{L}{A},$$
 $r = R \cdot \frac{L}{A},$
 $R = r \cdot \frac{A}{L}.$


Where:

- Resistance of element of any material of dimension A and L, ohm
- R = Resistivity of any element, ohm-length

электрические свойства

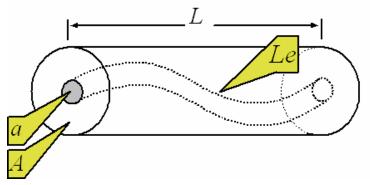
In a capillary tube model the equations are:

$$ro = Rw \cdot \frac{L}{a},$$
 $Ro = ro \cdot \frac{A}{L} = \frac{Rw \cdot \frac{L}{a} \cdot A}{L}$

$$=\frac{Rw}{\frac{a}{A}}=\frac{Rw}{\phi}$$

Rw= Resistivity of brine, ohm-length Сопротивление флюида пористого проводника (насыщенность, капиляры) единицы длины проводника

ro= Resistance of brine saturated capillary or porous media model, ohm сопротивление проводника (твердой фазы)


Ro= Resistivity of brine saturated capillary or porous media model, ohm-length

Сопротивление пористого проводника

Физические свойства электрические свойства

In a porous media model the equations become:

$$ro = Rw \cdot \frac{Le}{a}$$

$$Ro = ro \cdot \frac{A}{L} = \frac{Rw \cdot \frac{Le}{a} \cdot A}{L},$$

$$Ro = \frac{Rw \cdot \frac{Le}{L}}{\frac{a}{A}} \cdot \frac{Le}{\frac{Le}{L}} = \frac{Rw(\frac{Le}{L})^{2}}{\phi}$$

Variables That Influence Resistivity Of Natural Porous Media

Факторы влияющие на изменения сопротивления

Salinity of water (минерализация-

соленость воды

Temperature (температура)

Porosity пористость

Pore geometry форма пор

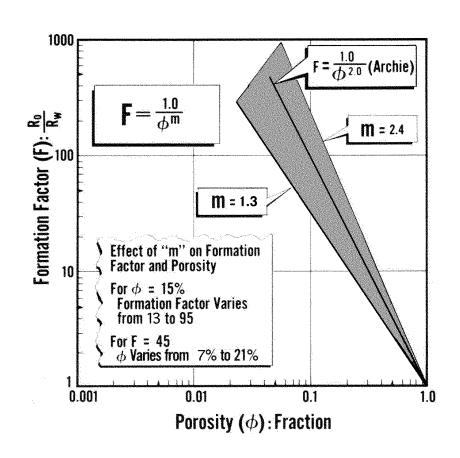
Formation stress давление

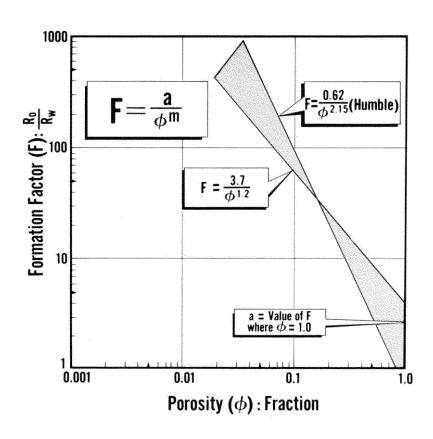
Composition of rock coctab f.ii.

электрические свойства

Formation Factor

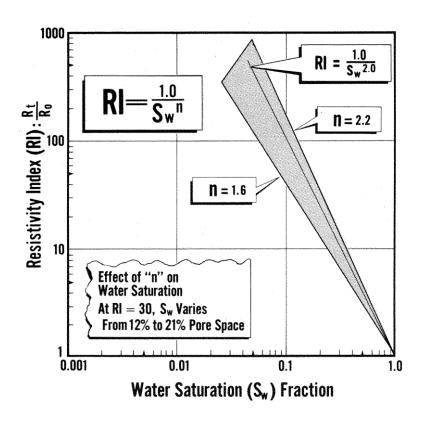
$$F = \frac{Ro}{Rw} = \frac{\frac{Le}{L}}{\frac{\phi}{Rw}}^{2} = \frac{\left(\frac{Le}{L}\right)^{2}}{\frac{\phi}{\phi}}$$


$$F \approx \frac{\frac{1}{\phi}}{\phi} = \frac{1}{\phi^2} = \phi^{-2}$$


$$F = a\phi^{-m}$$

where 'a' and 'm' are unique properties of the rock.

электрические свойства



Formation Factor vs. Porosity Illustrating Variation in slope "m"

Formation Factor vs. Porosity Illustrating Variation in intercept "a"

электрические свойства

Resistivity Index

$$RI = \frac{R_t}{R_o} = S_w^{-n}$$
, or $\frac{1}{Sw^n}$

Resistivity Index vs.
Water Saturation
For Range of Measured
Saturation Exponents

электрические свойства

$$Rt = F \cdot Rw \cdot RI,$$

$$F = a\phi^{-m}$$
, or $\frac{1}{\phi^m}$.

$$RI = \frac{R_t}{R_o} = S_w^{-n}, \text{ or } \frac{1}{Sw^n},$$

So,
$$Sw = \sqrt[n]{\frac{F \cdot Rw}{Rt}}$$
, and $\sqrt[n]{\frac{Ro}{Rt}}$,

$$Sw = \sqrt[n]{\frac{a}{\phi^m} \cdot Rw \cdot \frac{1}{Rt}},$$

The General Form of the Archie Equation.

Archie Relationship

- a is the intercept of the F
 versus φ plot and is
 related to tortuosity,
- m is the Cementation exponent and is also tortuosity dependent,
- n is the saturation
 exponent and is
 saturation history,
 wettability and pore
 geometry dependent,

Свойства пластовых флюидов

1. Пластовая вода

- соленость
- плотность
- вязкость
- удельное электрическое сопротивление

2. Углеводороды

- состав и молекулярная структура
- плотность (удельный вес)
- вязкость

Контрольные вопросы

- ІКакие задачи решает петрофизика? Что служит основой для геологической интерпретации ГИС? Методы получения петрофизической информации
- 2. Основные физические и фильтрационно-емкостные свойства изучаемые в ГИС и от каких факторов они зависят
- 3. Плотность, от каких факторов она зависит?
- 4. Электрические свойства горных пород и руд, от каких факторов они зависят?
- 5.Радиоактивность, от каких факторов она зависит?
- 6. Что Вы понимаете под термином упругие свойства г.п. и от каких геологических параметров среды они зависят
- 7. Дайте характеристику фильтрационно-емкостным свойствам (ФЭС) осадочного разреза
- 8.Какова связь между плотностью г.п. и ФЭС окружающую скважину среды
- 9. Какова связь между радиоактивностью г. п. и ФЭС окружающую скважину среды
- 10. Какова связь между электрическими свойствами и ФЭС окружающую скважину среды