

Лекция 12-13 Метод электроразведки при решении геологических задач

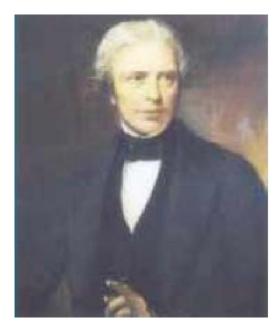
Электроразведка

это часть разведочной геофизики, в которой с помощью электромагнитных полей изучают строение Земли с целью поиска полезных ископаемых и решения других прикладных задач.

Основана на различии электромагнитных свойствах горных пород и руд

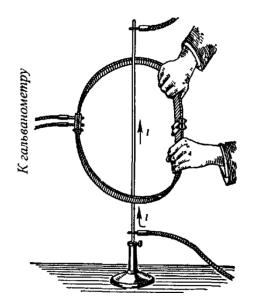
Закон Ома

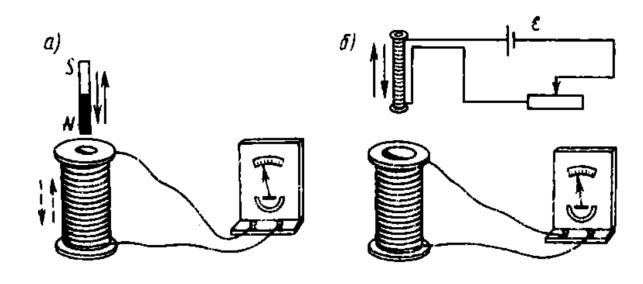
Формулировка **закона Ома** — сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению.



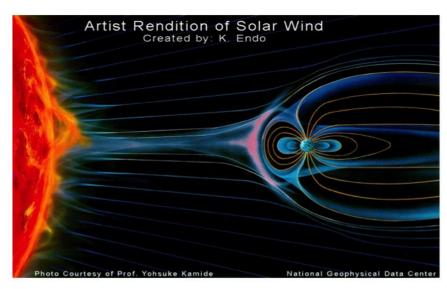
В 1826 немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону.

Закон Ома – физическая закономерность, которая определяет взаимосвязь между <u>током</u>, <u>напряжением</u> и <u>сопротивлением</u> проводника.


$$I = \frac{1}{I}$$


Закон электромагнитной индукции Фарадея

В 1831 г. М. Фарадеем было сделано одно из важнейших фундаментальных открытий в электродинамике — обнаружено явление электромагнитной индукции.


В замкнутом проводящем контуре при изменении магнитного потока, охватываемого этим контуром, возникает электрический ток.

Источники естественного электромагнитного поля Земли

• 1.Электрические процессы в ионосфере и магнитосфере

2.Электрические процессы в атмосфере Электромагнитное поле грозовых разрядов

 $\Delta U = 100 \text{ B/m}$, а во время гроз 40 000 B/м

— поле слож-ного взаимодействия метеорологи-ческих и электрических процессов, приводящих к грозовым разрядам (молниям). Количество молний за 1 сек на земном шаре более 100. Молния — это мощный электрический диполь. В атмосферном электричестве движение положительных зарядов вниз и встречное движение отрицательных зарядов вверх приводит к возникновению тока проводимости (*I* = 2,9*10-20 A/м2). У поверхности Земли разность потенциалов

История возникновения электроразведки

- 1750г Б.Франклин исследования в области атмосферного электричества
- 1829г Р.В.Фокс наблюдения над естественными электрическими полями над колчеданными месторождениями
- 1882г К.Барус попытка использовать съемку естественного электрического поля для поиска рудных месторождений
- 1910г К.Шлюмберже разработал метод сопротивлений
- 1920г Н.Лундберг Электроразведка низкочастотным переменным полем
- 1922г высокочастотный метод электроразведки (метод индукции)

Решаемые задачи:

- поиск и разведка рудных месторождений;
- поиск и разведка геотермальных ресурсов;
- выявление локальных нефтегазоперспективных структур, оценка коллекторских свойств отдельных слоев осадочного чехла;
- изучение осадочных бассейнов на региональном уровне;
- изучение проводящих зон в земной коре и верхней мантии (глубинная геоэлектрика);
- мониторинг электромагнитных полей с целью изучения природных и техногенных процессов в Земле (например, для прогноза землетрясений).
- изучение почв;
- поиск и изучение археологических объектов;
- поиск и изучение состояния техногенных объектов (трубопроводы, фундаменты, кабели и др.);
- изучение строения грунтов и их свойств при строительстве инженерных сооружений (инженерногеологические задачи);
- изучение и поиск подземных вод (гидрогеологические задачи);
- изучение загрязнений грунтов и подземных вод (геоэкологические задачи);
- изучение многолетнемерзлых пород;
- проведение геологического картирования;
- поиск и разведка строительных материалов и других нерудных полезных ископаемых;

Электроразведка - физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электрических и электромагнитных полей, существующих в Земле либо в силу естественных причин, либо созданных искусственно.

Основные электромагнитные свойства пород

- **Удельное электрическое сопротивление** (ρ) способность пород оказывать электрическое сопротивление прохождению тока .
- **Электропроводность** (γ) величина обратная удельному электрическому сопротивлению.
- **Электрохимическая активность** (α) свойство пород создавать естественные постоянные электрические поля.
- **Поляризуемость** (η) способность пород накапливать заряд при пропускании тока, а затем разряжаться после отключения этого тока (поляризоваться).
- **Диэлектрическая проницаемость** (ε) показывает, во сколько раз увеличивается емкость конденсатора, если вместо воздуха в него поместить данную породу.

Электромагнитные свойства пород служат основой для построения геоэлектрических разрезов.

Геоэлектрический разрез:

- ▶ над <u>однородным</u> пространством <u>нормальный</u>,
- ▶ над <u>неоднородным</u> <u>аномальный</u>.

На выделении аномалий и основана электроразведка.

Удельное электрическое сопротивление (У.Э.С.) горных пород

Известно, что
$$R = \rho \frac{l}{S}$$

где ho — удельное электрическое сопротивление каналов, по которым течет ток

- *R* электрическое сопротивление проводника
- *I* длина каналов
- **S** сечение каналов
- Чем > ρ и l, тем > R
- Yem > S, Tem < R
- По электрическим свойствам все природные объекты подразделяются на:
- Проводники ρ →0 и ϵ →∞
- Полупроводники 1 Ом*м>ρ> 0 и 20 отн. ед. < ε < ∞
- Диэлектрики ρ →∞ и ϵ →1
- В проводниках электромагнитное поле обусловлено сквозным током электронов и ионов,
- в полупроводниках сквозным током ионов и дырок,
- в диэлектриках преобладают волновые процессы, связанные с токами смещения, т.е. передачей энергии электромагнитного поля от одних двойных электрических слоев к другим (беспроводная поляризация)

Факторы, определяющие У.Э.С. осадочных горных пород

- 1) породообразующие минералы (минеральный скелет)+ примеси рудных минералов
- 2) поровое пространство (пустоты)
- 3) пластовые флюиды, заполняющие поры (пластовая вода, нефть, газ)
- Влияние У.Э.С. породообразующих минералов

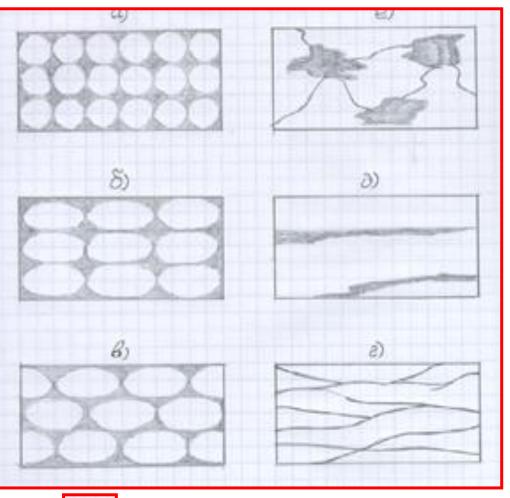
Кальцит -
$$\rho$$
 = 10⁹- 10¹⁴ (Ом·м) диэлектрики

Слагают до 90-95% объема осадочных горных пород, однако имеют вклад в общее У.Э.С. только **5-10**%

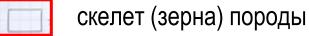
Влияние примеси рудных минералов

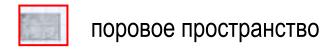
Пирит
$$-\rho = 10^{-5}$$
- 10 (Ом·м) проводники $-\rho = 10^{-5}$ - 10^{-2} (Ом·м)

- Содержание в осадочных горных породах не >5%
- Эти минералы характеризуют восстановительную обстановку (вероятная природа низкоомных нефтеносных коллекторов!!)

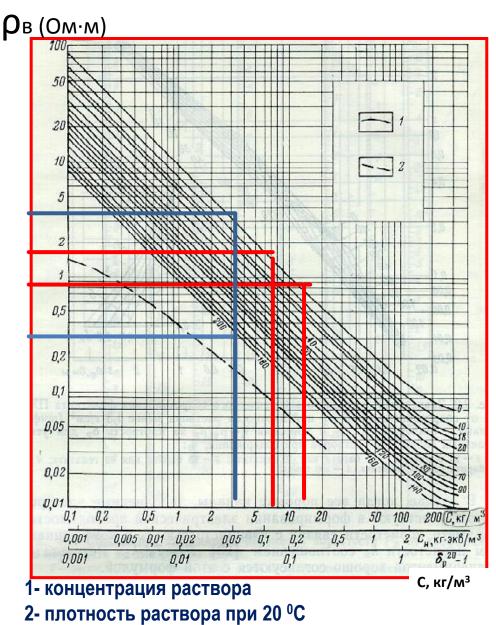

У.Э.С. горных пород

- Глины У.Э.С. от 0,5 до 5 (Ом·м)
- Песчаники –У.Э.С. от 5 до 50÷60 (Ом·м)
- Угли У.Э.С. составляет первые сотни Ом-м


Минерал	r (ом*м)	Порода	r (ом*м)
пирит	10-3	глина	5
пирротин	10-2	пески	100
графит	10 ⁻¹	Известняк	300
магнетит	10 ⁻¹	Мрамор	10 ⁵
кварц	1014	Глинистый сланец	500
слюды	10 ¹³	Гранит	10 ¹⁴
Полевые шпаты	10 ¹⁵	Нефть	10 ¹⁴


У.Э.С. горных пород

Влияние порового пространства



- а), б),в) гранулярная пористость (преимущественно первичная , гидрофильная)
- г), д), е) трещинная, кавернозная пористость (преимущественно вторичная, гидрофобная)
- а) минимальное У.Э.С. (при постоянном k_n и У.Э.С.флюида),
- е) максимальное У.Э.С.

У.Э.С. горных пород

Шифр кривых – температура в ⁰С

Влияние пластовых флюидов

У.Э.С. пластовой воды зависит:

а) от концентрации солей С с 10 до 20 кг/см³ при T=0(const)

РВ изменяется от 1 до 0,5 Омм

б) от температуры флюида
Т изменяется от 0°С до 180 °С
При C=5(const)

Рв изменяется от 0,2 до 2 Омм (в нефтяном пласте T =50÷200 °C)

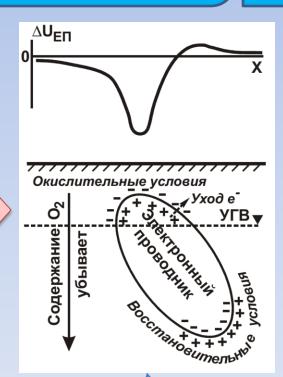
в) от состава флюида

У У.Э.С. нефти $10^9 \div 10^{16}$ Омм газа $10^{12} \div 10^{14}$ Омм

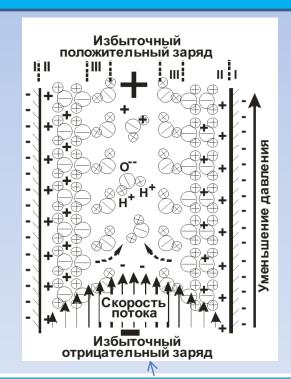
У.Э.С. будет зависеть от количества связанной пластовой воды.

Электрическая проводимость горных пород

Горные породы	Удельное электрическое сопротивление – ρ, Ом·м				
Электролитическая проводимост ток в горных породах течет благ трещин, заполненных флюидами	одаря наличию в них пор и				
Электронная проводимость – в м	иеталлах				
Глина, глинистые сланцы	0,5 – 10				
Песок, песчаник, пористый известняк	10 - 10 ³				
Сульфиды (галенит, пирротин, магнетит), молибден, графит	10-1 - 10-6				
Диэлектрики - кварц, слюда, каменная соль, ангидрит, гипс	10 ⁸ - 10 ¹⁵				
Магматические и метаморфические породы	10 ² – 10 ⁶				


Поля используемые в электроразведке

По происхождению


естественные: магнитотеллурическое поле, возникающее в результате взаимодействия с Землей вихревых токов в ионосфере и грозовых разрядов; электрохимические поля, возникающие вследствие электрохимических, фильтрационных и диффузионно-адсорбционных процессов на границе раздела различных сред;

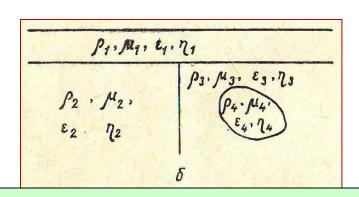
искусственные — поля, которые создаются при помощи заземленных линий, подключенных к источнику переменного или постоянного тока, незаземленных контуров, питаемых переменным током, а также антенн.

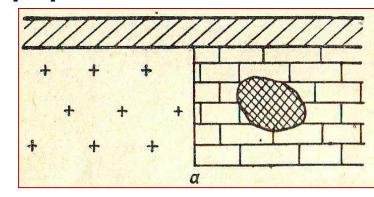
3. Естественное электрической поле

МЕХАНИЗМ ОБРАЗОВАНИЯ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ ПОТЕНЦИАЛОВ

ФИЛЬТРАЦИОННЫЙ МЕХАНИЗМ ВОЗНИКНОВЕ-НИЯ ЕП. І - ДВОЙНОЙ ЭЛЕКТРИЧЕСКИЙ СЛОЙ, ІІ - ПРОЧНО СВЯЗАННАЯ ВОДА, ІІІ - РЫХЛО СВЯ-ЗАННАЯ ВОДА.

Источники естественных электрических полей:


- 1. Электрохимические и электрокинетические процессы в земной коре:
- -Окислительно-восстановительный потенциал
- -Фильтрационный потенциал
- Диффузионно-адсорбционный потенциал
- 2. В результате вариаций магнитного поля Земли в проводящих горных породах возбуждается переменный электрический ток теллурический
- 3. При воздействии на ионосферу Земли потока заряженных частиц возникают переменные электромагнитные поля –теллурики.
- 4.Под воздействием гроз в верхних частях Земли повсеместно и всегда существует слабое грозовое поле атмосферики.


Источники искусственных электрических полей:

• Источники постоянного тока:

- 1. Сухие элементы и аккумуляторы.
- 2.Генераторы постоянного тока, приводящиеся в действие двигателями автомобиля.
- Источники переменного тока:
- 1.Генераторы гармонических колебаний или прямоугольных импульсов.
- 2.Магнитнодинамические генераторы (МГД-генераторы).

Классификация методов электроразведки

Объект изучения – геоэлектрический разрез

геологический разрез

Методы электроразведки

- 1. <u>По характеру используемого</u> пространства (по месту проведения) группы методов:
- космические
- аэрометоды
- наземные (полевые),
- подземные (скважинные , шахтные),
- морские

- 2. По области применения электроразведка:
- •структурная,
- •нефтяная
- •рудная,
- •инженерно-геологическая
- 3. По типу решаемых геологических задач:
- зондирование
- профилирование

4. По типу используемого поля

Искусственное электромагнитное поле

Естественное электромагнитное

искусственное электромагнитное поле							поле					
Постоянное электрическое поле				e	Переменное электромагнитное поле		Постоянное электрическое поле	Переменное электромагнитное пол		эле		
(ochoban na namepenna			поляриза циионны	Частотн ый метод	Метод становле ния поля	Метод поляризационный (электрохимичес кий)			е токи			
Вертикальное электрическое зондирование (ВЭЗ)	Дипольное электрическое зондирование (ДЭЗ)	Электрическое профилирование (ЭП)	Метод заряженного тела (M3T)	Метод вызванных потенциалов (ВП)	Частотное зондирование (ЧЗ)	Метод становления поля (МСП)	Метод естественного поля (ЕП) или поля самопроизвольной поляризации (ПС)	Метод теллурического зондирования (МТЗ)	Метод теллурического профилирования (МТП)	Метод теллурических токов (МТТ)	Магнитовариационная разведка	Магнитовариационное зондирование

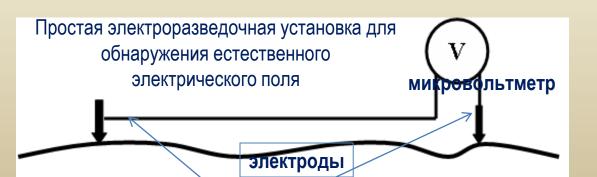
Электрохимические постоянные естественные поля

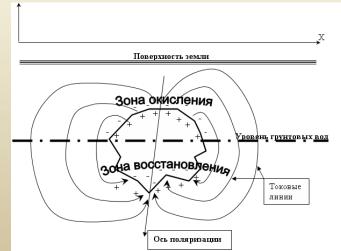
обусловлены:

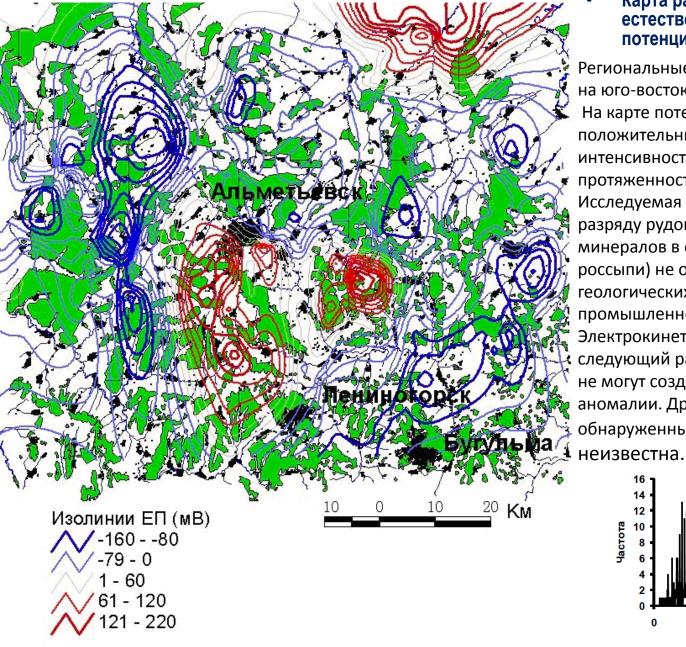
- 1) окислительно-восстановительными реакциями, протекающими на границах проводников:
 - •электронного (рудные минералы например, сульфиды, окислы) и
 - •ионного (окружающие породы подземные воды),
- 2) разностью окислительно-восстановительного потенциала подземных вод вдоль проводящего слоя (например, графита, антрацита).

Электрокинетические постоянные естественные поля обусловлены

- 1) диффузионно-адсорбционными и
- 2) фильтрационными процессами в горных породах, насыщенных подземными водами.


Естественные потенциалы наблюдаютсятакже при движении (фильтрации) подземных вод через пористые породы.


Измерение ЕП


Используют устройство, представляющее собой провод, к концам которого прикреплены неполяризующиеся электроды (не создающие собственные электрические поля).

Один из электродов соединен с проводом через потенциометр (микровольтметр).

Измеряемыми параметрами полей являются их <u>потенциалы</u> (U) и <u>градиенты потенциала</u> (ΔU).

Карта распределения естественных электрических потенциалов.

Региональные электроразведочные работы на юго-востоке Республики Татарстан На карте потенциалов ЕП обнаруживаются положительные и отрицательные аномалии интенсивностью в сотни милливольт и протяженностью в десятки километров. Исследуемая территория не относится к разряду рудоносных. Отдельные скопления минералов в осадочном чехле (например россыпи) не образуют крупных геологических тел и, как правило, не имеют промышленного значения. Электрокинетические процессы (см. следующий раздел) в данном районе, также не могут создавать такие крупные аномалии. Другими словами, природа обнаруженных флуктуаций ЕП

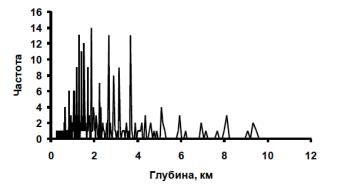
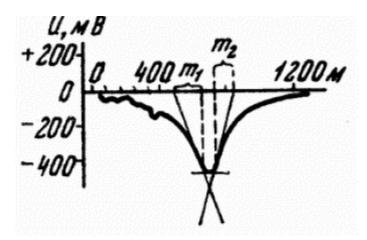



Рис. 11. Распределение источников ЕП по глубине.

Количественная интерпретация метода ЕП

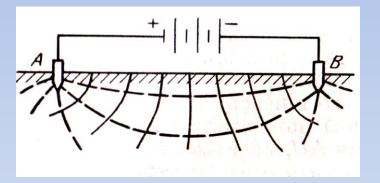
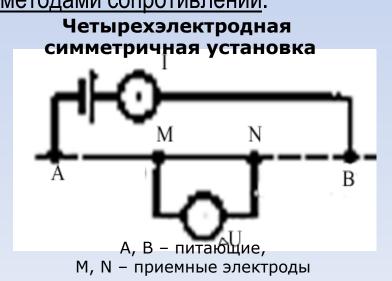


Рис. 3.14. Кривая ЕП над сульфидной залежью и ее интерпретация способом касательных По разностям абсцисс точек пересечения касательных (m_1 и m_2) можно определить \hbar по формуле:

 $h=a(m_1+m_2),$

Искусственные постоянные электрические поля


- •создаются с помощью батарей, аккумуляторов или генераторов постоянного тока, подключаемых с помощью изолированных проводов к стержневым электродам заземлителям.
- •Простейшая система состоит из двух заземлителей электродов **A** и **B**, подключенных с помощью проводов к плюсу и минусу источника
- •Через электрод **A** ток поступает в землю, а через электрод **B** уходит из нее.

Прямой задачей электроразведки является определение параметров электромагнитного поля над заданным геоэлектрическим разрезом.

Методы электроразведки, использующие **искусственные постоянные** электрические поля, называются методами сопротивлений.

Под установкой в электроразведке понимают комбинацию питающих и приемных электродов. Коэффициент K, зависящий от расстояний между ними, называется коэффициентом установки. Над неоднородной средой рассчитанное по этой формуле удельное электрическое сопротивление называется кажущимся сопротивлением (КС): $\rho_{\kappa} = K\Delta U/J$.

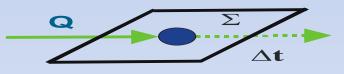
Основными методами <u>постоянного тока</u> являются методы сопротивлений.

Модификации:

электропрофилирование (ЭП)

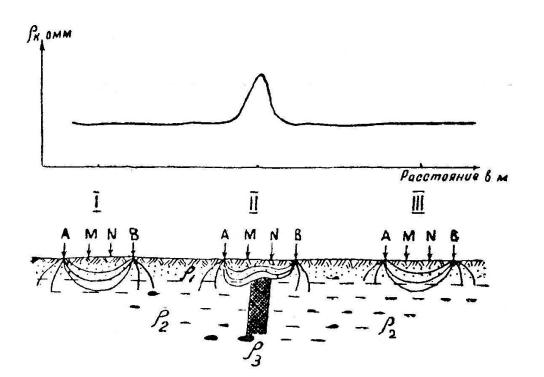
электрозондирование (вертикальное - ВЭЗ)

ТЕОРИЯ ЭЛЕКТРОРАЗВЕДКИ НА ПОСТОЯННОМ ТОКЕ


Потенциал точечного заряда

$$\mathbf{V}(\mathbf{P}) = \frac{\mathbf{q}(\mathbf{A})}{\mathbf{r}(\mathbf{P}, \mathbf{A})}$$
 $\mathbf{V}_2 - \mathbf{V}_1 = \Delta \mathbf{V}$
 $\frac{\Delta \mathbf{V}}{\Delta \mathbf{r}} = \mathbf{E} \quad \mathbf{E} = \frac{\mathbf{d} \mathbf{V}}{\mathbf{d} \mathbf{r}}$

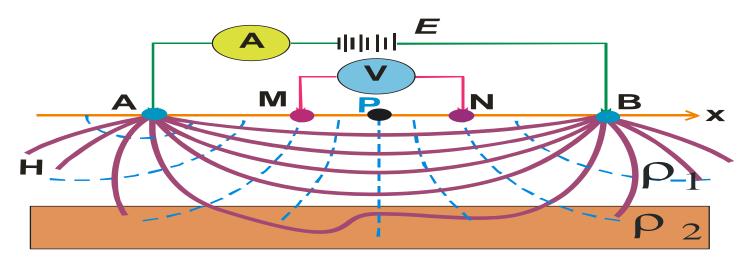
Е - напряженность поля

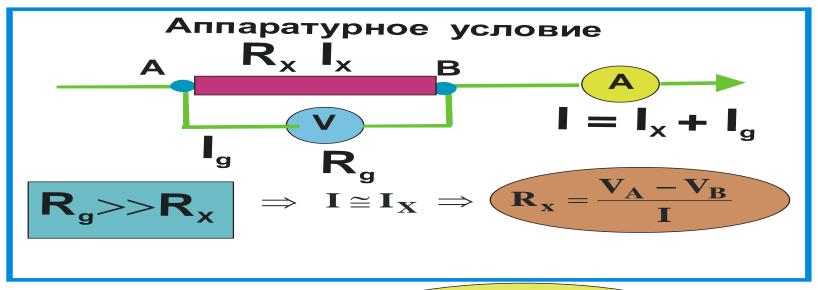

ЗАКОН ОМА

СИЛА ТОКА
$$\mathbf{I} = \frac{\mathbf{Q}}{\Delta \mathbf{t}}$$

Плотность тока
$$\mathbf{i} = \frac{\mathbf{I}}{\Sigma}$$

$$\mathbf{I} = \frac{\Delta \mathbf{V}}{\mathbf{R}}$$
 $\mathbf{R} = \rho \frac{\mathbf{L}}{\mathbf{S}}$ $\mathbf{i} = \frac{1}{\rho} \mathbf{E} = \mathbf{S} \cdot \mathbf{E}$

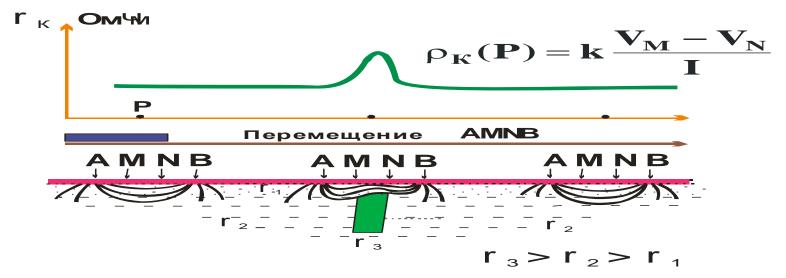



$$\rho_{K} = K \frac{\Delta U}{I} \Box j$$

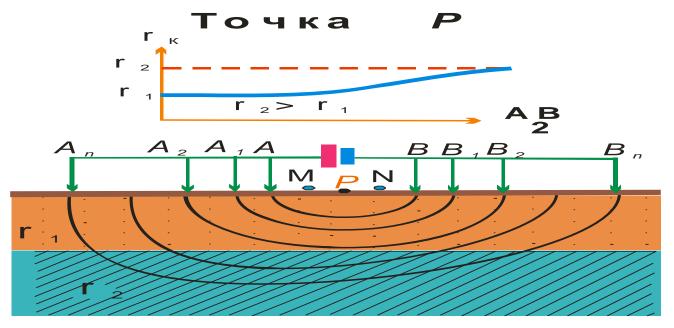
где **j**- плотность тока в области измерительных электродов K- геометрический коэффициент установки

Если I поддерживать постоянным, то замеры ΔU будут выполняться в масштабе $oldsymbol{
ho}$ К, т.е. $\Delta U \sim oldsymbol{
ho}$ К

МЕТОД СОПРОТИВЛЕНИЙ


$$\mathbf{R} = \frac{\mathbf{V_M} - \mathbf{V_N}}{\mathbf{I}} \qquad \qquad \mathbf{\rho}(\mathbf{P}) = \mathbf{k} \frac{\mathbf{V_M} - \mathbf{V_N}}{\mathbf{I}}$$

Метод сопротивлений


По геометрии и строению изучаемых геологических разрезов методы электроразведки условно делятся на:

- зондирования, для расчленения горизонтально (или полого) слоистых разрезов в вертикальном направлении;
- профилирования, для изучения крутослоистых разрезов или выявления объектов в горизонтальном направлении;
- подземно-скважинные (объемные), для выявления неоднородностей между скважинами, горными выработками и земной поверхностью.

ЭЛЕКТРОПРОФИЛИРОВАНИЕ

ВЕРТИКАЛЬНОЕ ЭЛЕКТРИЧЕСКОЕ ЗОНДИРОВАНИЕ

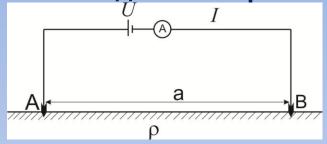
Электропрофилирование

В основном применяются профилирование на переменном и постоянном токах, вызванной поляризации, естественного электрического поля, радиокомпарация.

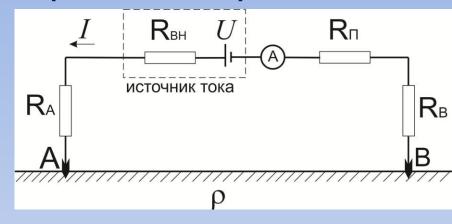
Данные профилирования несут в себе информацию о геоэлектрических неоднородностях вдоль профилей или по площади в определенном интервале глубин.

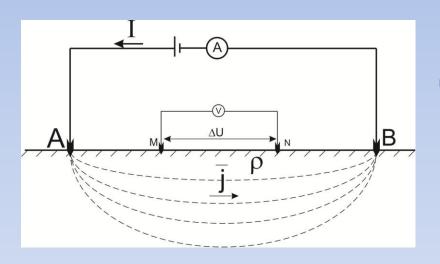
Установка ЭП <u>искусственного поля</u> состоит из питающих **A** и **B** и приемных **M** и **N** электродов с постоянными расстояниями между ними, перемещаемых вдоль профиля с определенным шагом или транспортируемых непрерывно.

При этом разносы установки не меняются, а если измерения выполняют на переменном токе, то фиксируют частоту или время задержки переходного процесса.


В сущности ЭП - модификация зондирования в узком диапазоне действующих расстояний: разносов, частот или времени становления поля.

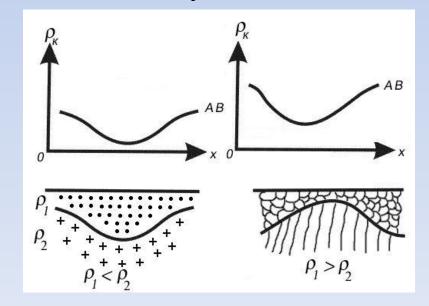
Шаг профилирования выбирают обычно равным длине приемной линии MN, то есть 10, 20 и 50 м. Наиболее распространенные установки ЭП:

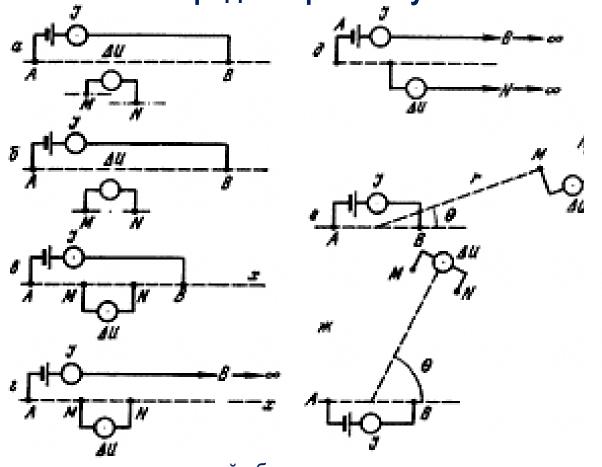

- •симметричная (СЭП),
- •дипольная (ДЭП),
- •комбинированная(КЭП) и
- •срединного градиента (СГ).


Электропрофилирование

Методика измерения удельного электрического сопротивления

$$R = \frac{U_{AB}}{I_{AB}} \quad \stackrel{?}{\Rightarrow} \rho$$

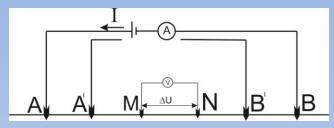


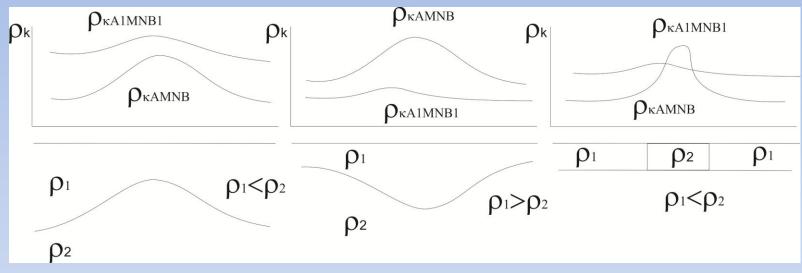

Четырехэлектродная установка

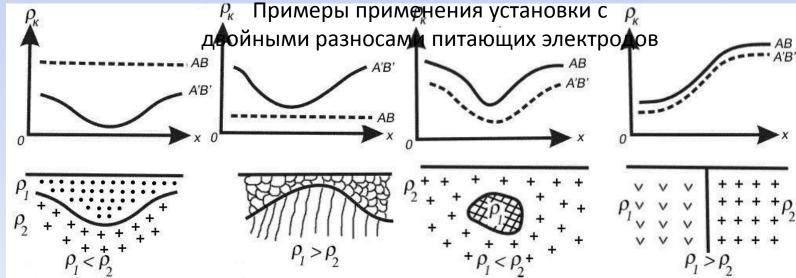
$$E = \frac{j}{\rho}$$
 $\Delta U = E \cdot |MN|$ $\rho = K \frac{U}{I}$

Примеры профилирования с 4-х электродной установкой

План расположения питающих (A и B) и приемных (M и N) электродов в разных установках метода сопротивлений:






Трехэлектродная комбинированная установка – КЭП(Гуммеля)

- а четырехэлектродной, б срединного градиента,
- в симметричной четырехэлектродной,
- г трехэлектродной, д двухэлектродной,
- е дипольной радиальной,
- ж дипольной азимутальной

Установка с двойными питающими электродами

1<u>. ЭЛЕКТРОПРОФИЛИРОВАНИЕ</u> НАД АНТИКЛИНАЛЬНОЙ СКЛАДКОЙ.

График кажущегося удельного электрического сопротивления (ρ_k), полученный по результатам <u>электрического профилирования</u> над двухслойным разрезом ($\rho_1 < \rho_2$)

ЭЛЕКТРОПРОФИЛИРОВАНИЕ НАД ВЕРТИКАЛЬНЫМ КОНТАКТОМ

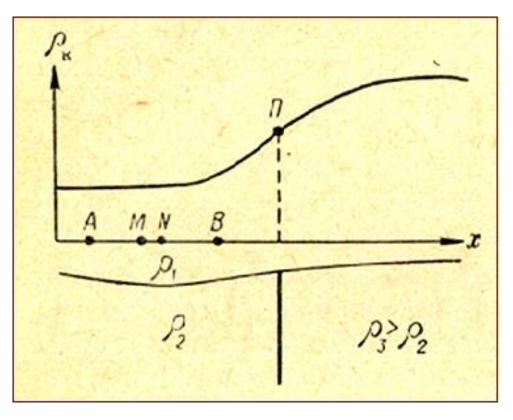
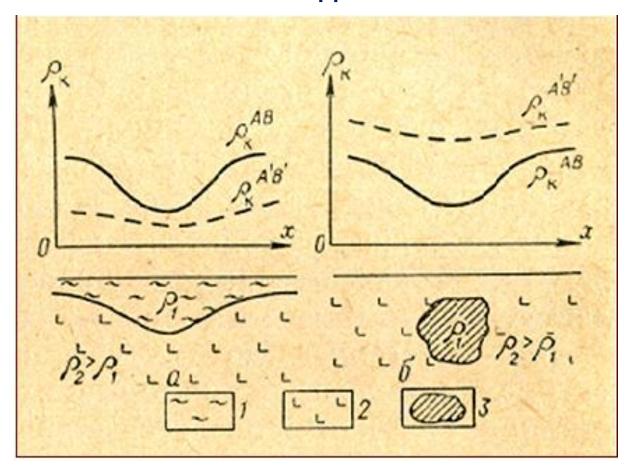


График электропрофилирования установкой AMNB над контактом под перекрывающим слоем пород

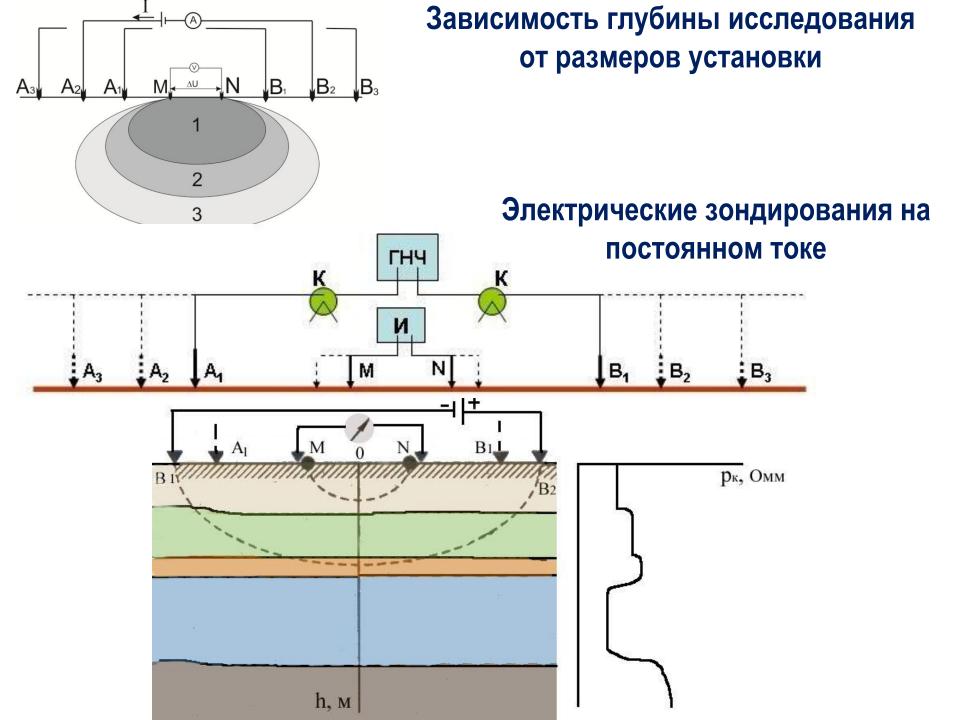
ЭЛЕКТРОПРОФИЛИРОВАНИЕ УСТАНОВКОЙ <u>А A' MN B' В</u> (с двумя питающими линиями)

сланцы (У.Э.С.=50 ом·м)

известняки (У.Э.С.=550 ом·м)



пески (У.Э.С.=120 ом⋅м)


$$\frac{AB}{A'B'} = 2 - 4, MN \le \frac{1}{3} \to A'B$$

В результате строят два графика для двух разносов.

ЭЛЕКТРОПРОФИЛИРОВАНИЕ НАД СИНКЛИНАЛЬНЫМ ПРОГИБОМ И РУДНЫМ ТЕЛОМ

• Графики электропрофилирования симметричной установкой с двумя разносами над наносами (а) и рудной залежью (б). 1- наносы 2- эффузивы 3- рудная залежь

Методика ВЭЗ

Вертикальное электрическое зондирование выполняется симметричной четырехэлектродной или трехэлектродной градиент-установками.

Производится измерение ΔU и J и рассчитывается

$$\rho = \frac{\pi \cdot AM \cdot AN}{MN} \cdot \frac{\Delta U}{I} = K \frac{\Delta U}{I}$$

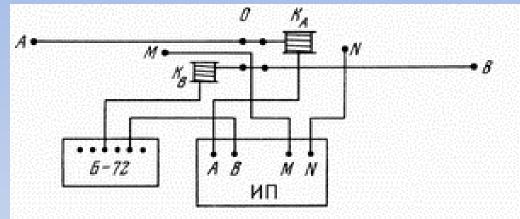
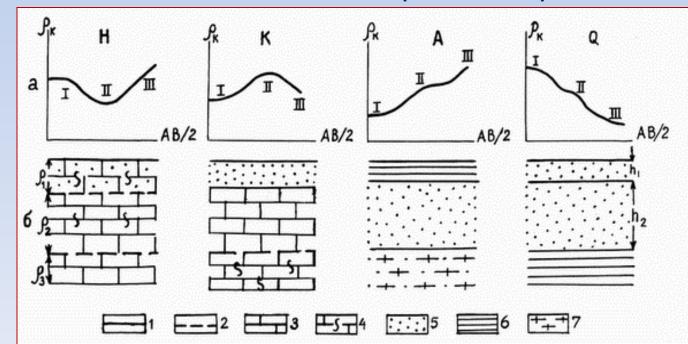
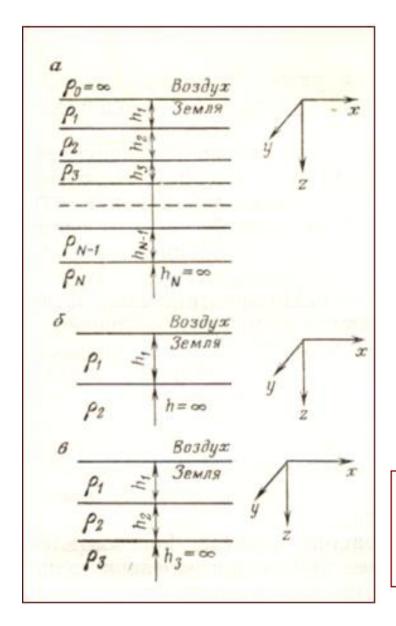



Схема установки ВЭЗ:


К_A, К_B — катушки с изолированными проводами, Б — батарея, ИП — измерительный прибор

Типичные трехслойные кривые ВЭЗ:

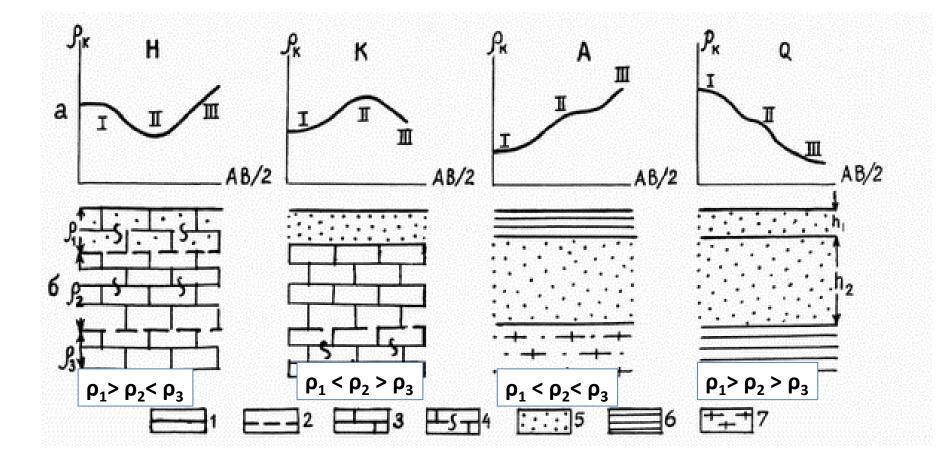
а - графики КС, б - геоэлектрические разрезы; 1 и 2 - литологические и гидрогеологические границы; 3 и 4 - известняки массивные и трещиноватые; 5 - пески; 6 - глины; 7 граниты



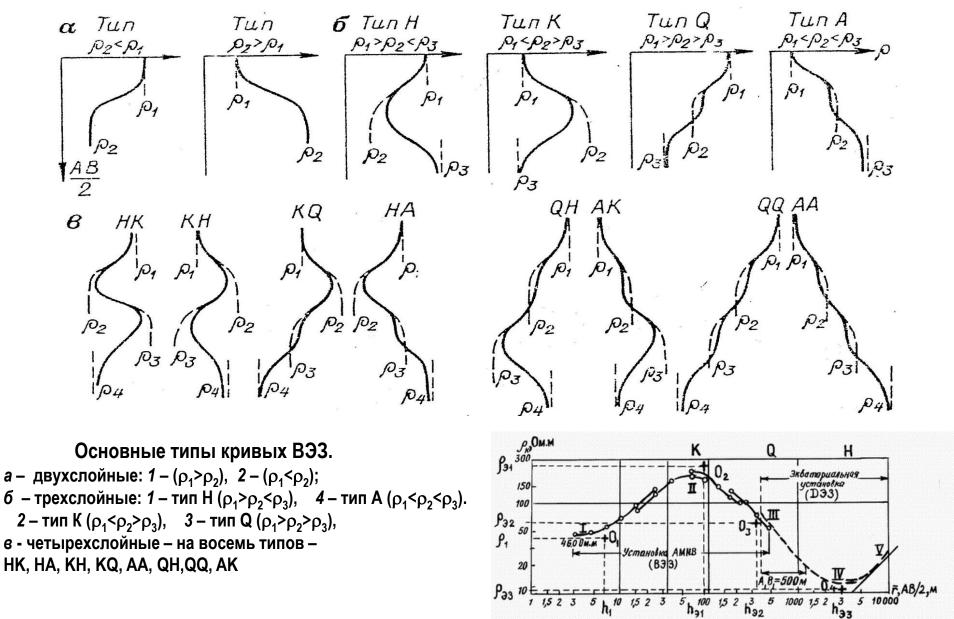
2. <u>ВЕРТИКАЛЬНОЕ ЭЛЕКТРИЧЕСКОЕ ЗОНДИРОВАНИЕ</u>. ДВУХСЛОЙНЫЙ РАЗРЕЗ

Двухслойный геоэлектрический разрез (a) и кривые зондирования (б)

МОДЕЛИ ГОРИЗОНТАЛЬНО-СЛОИСТОГО РАЗРЕЗА



Определение продольного сопротивления пласта

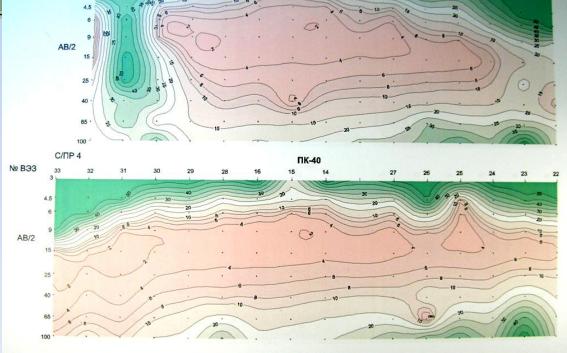

Модели геоэлектрического разреза

- а) горизонтально-слоистая
- б) двухслойная
- в) трехслойная

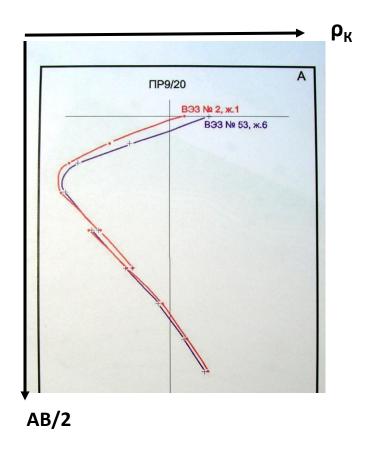


Типичные трехслойные кривые ВЭЗ:

- а графики КС,
- б геоэлектрические разрезы;
- 1 и 2 литологические и гидрогеологические границы;
- 3 и 4 известняки массивные и трещиноватые;
- 5 пески; 6 глины; 7 граниты



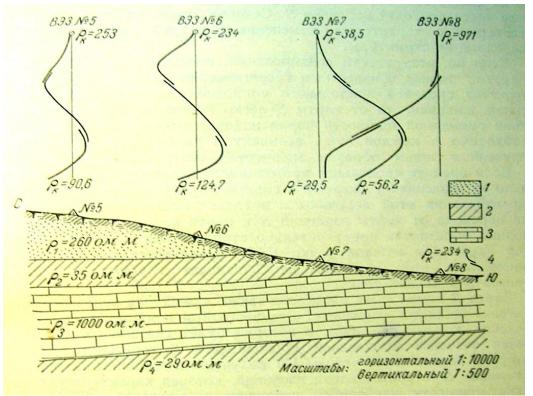
Пятислойная кривая ВЭЗ-ДЭЗ



Карта изоом относительно среднего уровня (100 Ом м) для полуразноса питающих электродов AB/2 = 500 м.

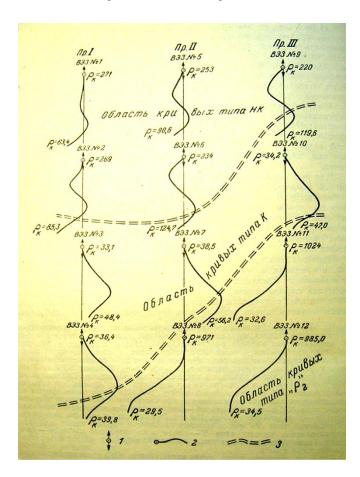
Разрезы изоом по данным ВЭЗ

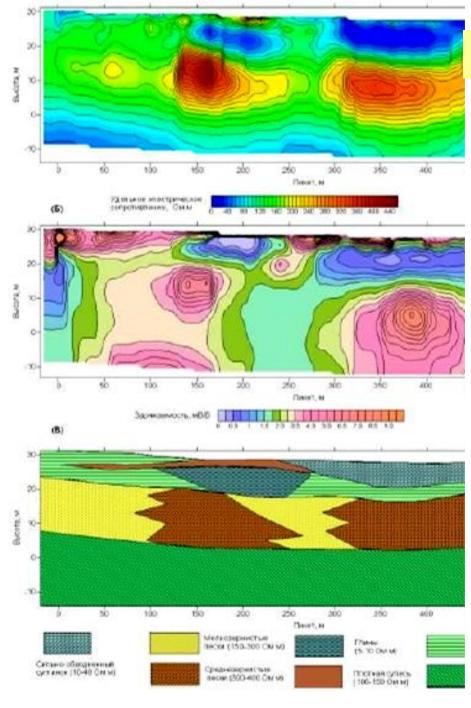
Реальная кривая ВЭЗ



Интерпретация данных ВЭЗ Количественная Качественная По палеткам 1. Карты типов Моделирование кривых (подбор) разреза 2. Разрезы изоом 3. Карты изоом **4.** Карты р_{к мин} или Рк макс 5. карты изолиний

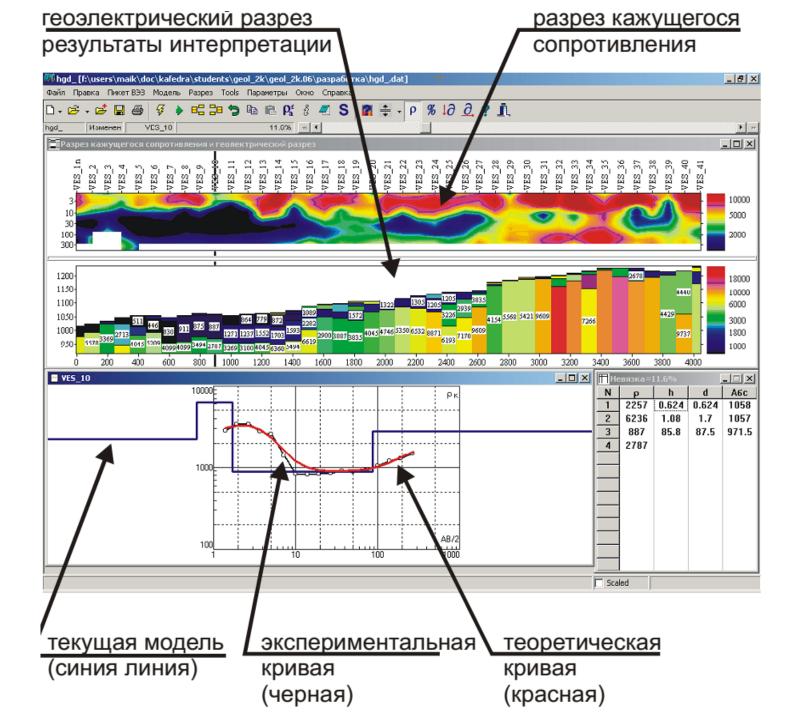
проводимости


Качественная интерпретация


- На этом этапе составляют карты:
- 1. Карты типов кривых.
- 2. Карты изолиний $\rho_{\rm e}$ для определнных разносов.
- 3. Разрезы $ho_{\hat{e}}$.
- 4. Карты изолиний проводимости.

Схематический геологический разрез, отстроенный по виду кривых ВЭЗ

Карта типов кривых ВЭЗ



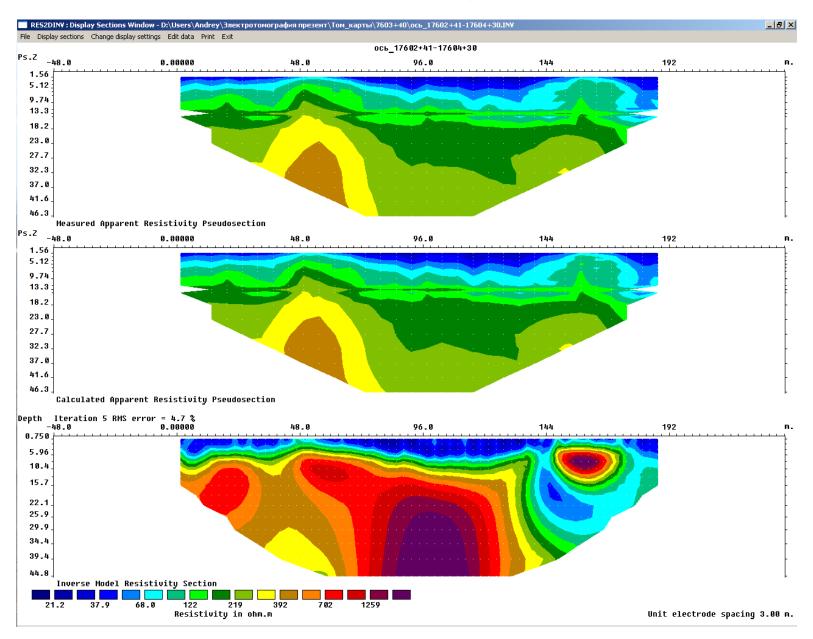

Количественная Интерпретация

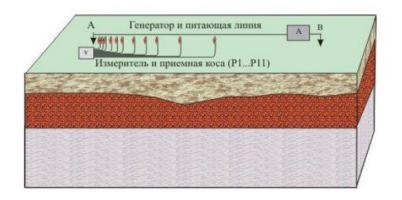
Рис. 24. Результат решения двухмерной обратной задачи и геологический разрез вдоль профиля

- (а) геоэлектрический разрез по удельному электрическому сопротивлению
- (б) геоэлектрический разрез по заряжаемости (мВ/В)
- (в) геолого-геофизический разрез

Изучение мерзлоты

Искусственные импульсные (неустановившиеся) электромагнитные поля

- •Для <u>неустановившихся</u> полей с помощью заземленных линий или незаземленных контуров изучается процесс установления и спада разностей потенциалов ∆U на разных временах после окончания питающего постоянного или переменного импульса. Различают неустановившиеся поля <u>вызванной поляризации</u> (ВП) и <u>переходных процессов</u> (ПП) становления поля.
- ➤ВП <u>измеряется разность потенциалов через 0,5-1 с после отключения постоянного</u> тока, т.е. измеряется спад напряженности электрического поля, обусловленный разной вызванной поляризуемостью горных пород.
- ➤ПП -<u>изучается разность потенциалов на разных временах после окончания питающего постоянного сигнала</u>, т.е. получают форму искаженного средой сигнала (зависящую от формы импульса и сопротивления среды).



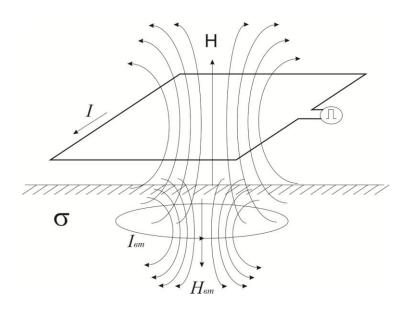
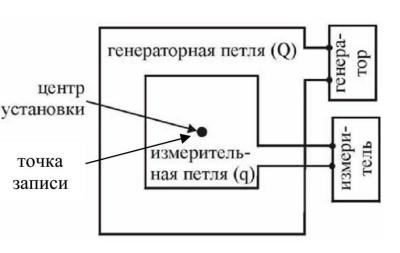
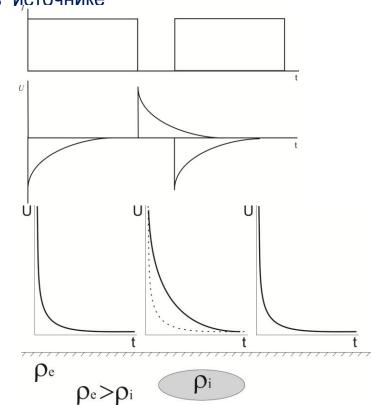


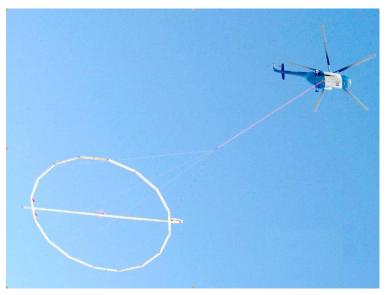
Рис. 23. Измерительная установка.



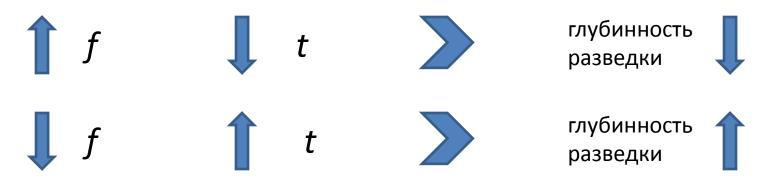

Низкочастотные индуктивные методы

Установка метода 3C и примеры кривых U(t)

Зондирование становлением поля (3C) — метод электромагнитного зондирования с искусственным (контролируемым) источником, основанный на изучении поля переходных процессов, которое возбуждается в земле при изменении тока в источнике



• Варианты исполнения приемных и генераторных петель



Искусственные переменные гармонические электромагнитные поля

Частотный принцип увеличения глубинности основан на скинэ-эффекте.

<u>Скин-эффект</u> выражается в прижимании поля к поверхности Земли, тем большем, чем выше частота гармонического поля (*f*) или меньше время (*t*) после создания импульсного поля.

f - частота поля, t — время диффузии (становления поля, или переходного процесса)

Искусственные переменные гармонические электромагнитные поля

Создаются с помощью генераторов синусоидального напряжения звуковой и радиоволновой частоты.

Измеряются соответственно электрические (E) или магнитные (H) составляющие напряженности поля.

Они определяются прежде всего удельным электрическим сопротивлением вмещающей среды.

Чем выше сопротивление, тем меньше скин-эффект и больше глубина проникновения поля.

Чем ниже сопротивление, тем больше интенсивность вторичных вихревых электромагнитных полей, индуцированных в среде.

Сверхвысокочастотные и биогеофизические поля

- ▶Сверхвысокочастотные поля используются для пассивной и активной радиолокации земной поверхности.
- ▶ При активной радиолокации земная поверхность облучается искусственными короткими радиолокационными импульсами, изучаются времена прихода и форма отражений от границ слоев с разными свойствами.
- ▶При пассивной радиолокации изучаются естественно-техногенные радиотепловые (РТ) или инфракрасные (ИК) излучения земной поверхности.
- ▶Биогеофизические поля это поля, создающие биолокационный эффект (БЛЭ), т.е. вращение или отклонение рамок тех или иных конструкций в руках операторов над природными или техногенными объектами.

Интерпретация данных электромагнитных профилирований

- 1. **Качественная интерпретация** электромагнитного профилирования это прежде всего визуальное (или с помощью вероятностно-статистических методов) выявление аномалий на профилях и картах, т.е. отклонений наблюденных параметров поля или кажущихся сопротив-лений, поляризуемостей от первичного (нормального) или среднего (фонового) поля.
- Аномалия считается достоверной, если она удовлетворяет правилу «трех сигм и трех точек», т.е. амплитуда аномалий превышает 3, где среднеквадратическая или близкая к ней относительная среднеарифметическая ошибка съемки, которая прослеживается не менее чем на 3 точках про-филя.
- С помощью вероятностно-статистических методов выявляются аномалии с амплитудой, близкой к , а визуально в 3 раза больших .

Интерпретация данных электромагнитных профилирований

- Форма и простирание аномалий электромагнитного профилирования обычно соответствуют плановому положению создавших их объектов. Ширина (I) аномалии над тонким (I h) объектом зависит от глубины залегания его верхней кромки (h), а над толстым (I H) от его ширины (L). Форма и интенсив-ность аномалий, а значит, и эффективность профилирования зависят от следующих природных и технических факторов:
- 1) глубины залегания (h) по отношению к поперечным размерам (d) геологических объектов (обычно выделяются объ-екты с h/d меньше 2–5);
- 2) контрастности электромагнитных свойств объектов и вмещающей среды, а в индуктивных методах от абсолютных электропроводностей объектов;
- 3) уровня технических помех и наличия помехозащищен-ной аппаратуры;
- 4) оптимального выбора метода, глубинности разведки (а значит, *r*, *T*, *t*), системы наблюдений, интенсивности первичного (питающего) поля и его поляризации, т.е. направления вектора E по отношению к простиранию объектов. Например, когда вектор E совпадет с простиранием объектов, в проводящих телах индуцируются максимальные вторичные магнитные поля, а ко-гда перпендикулярен простиранию, наблюдаются максимальные кондуктивные аномалии вторичных электрических полей.
- Заключительным этапом качественной интерпретации яв-ляется прослеживание по профилям или картам профилей выяв-ленных аномалий, их межпрофильной корреляции и сопоставление с конкретными геологическими данными.

Количественная интерпретация

- Количественная интерпретация данных электромагнитного профилирования это определение (чаще оценка) формы, глубины, а иногда размеров, физической и геологической природы аномалий.
- Она начи-нается с выбора физико-геологических моделей, которыми можно аппроксимировать разведываемые объекты: контакты сред, мощные (L h) и тонкие (L h) пласты, изометрические (шарообразные), вытянутые (линзообразные, цилиндрообразные) объекты и др.
- Решение прямых и особенно обратных задач методами математического и физического моделирования для перечисленных моделей сложнее, чем для зондирований.
- Тем не менее, в каждом методе существуют аналитические и графические приемы количественной интерпретации

Применение методов переменного электрического и магнитного поля

- Методы переменного естественного электрического и магнитного поля (ПЕЭП и ПЕМП) используют главным образом для структурно-геологического картирования на глубинах до 500 м, т.е. выявления контактов, пластов, локальных объектов, зон тектонических нарушений, трещиноватости, обводненности, а также при поисках пластовых рудных и нерудных ископаемых.
- Полевые индуктивные методы (НЧМ и МПП) в вариантах незаземленной петли (НП) применяют в основном для поисков и разведки хорошо проводящих массивных руд, залегающих на глубинах до 500 м.
- Варианты ДК и ДИП (ДЭМП) используют для геологического картирования и поисков рудных и нерудных объектов на меньшей глубине (до 100 м).

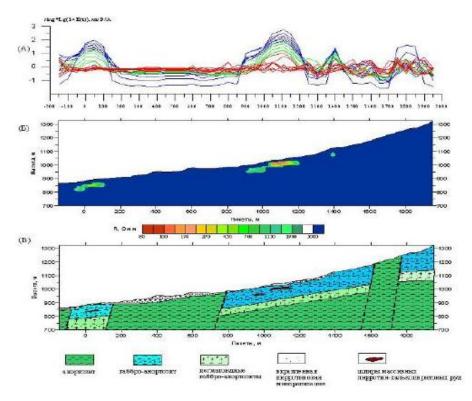


Рис. 25. Результат исследований методом переходных процессов по профилю.

- (a) графики профилирования на различных временных задержках;
- (б) псевдо геоэлектрический разрез;
- (в) геологический разрез.

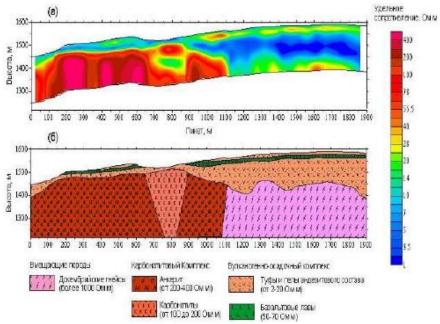


Рис. 26 (а) - геоэлектрический разрез по удельному электрическому сопротивлению;

(б) - геолого-геофизический разрез.

• Аэроэлектроразведка

- Разновидностью индукционных методов электроразведки является воздушная электроразведка.
- Все варианты аэроэлектроразведки основаны на измерении магнитных компонент поля.
- 1. Одним из самых глубинных (несколько сот метров) методов электроразведки является метод длинного кабеля (ДК-А), в котором первичное поле создается переменным током частотой до 1000 Гц, протекающим по заземленному на концах длинному кабелю. Он укладывается вдоль предполагаемого простирания пород.
- Измерительная станция помещается на самолете или вертолете, которые летают на небольшой высоте (50 500 м) по профилям длиной до 25 км, перпендикулярным кабелю и расположенным на расстоянии 150 500 м друг от друга.
- Измерение горизонтальных (перпендикулярных кабелю) амплитудных и фазовых компонент магнитного поля производится автоматически.
- Обработка материалов проводится с помощью ПК и сводится к построению карт графиков наблюденных компонент или рассчитанных по ним кажущихся (эффективных) сопротивлений.

В аэроварианте дипольного индукционного профилирования (ДИП-А) генераторная рамочная антенна располагается на самолете или вертолете, а измерительные рамки находятся либо на втором самолете или вертолете, летящем на расстоянии 100 - 500 м, либо в выносной гондоле на тросс-кабеле длиной до 150 м.

Высота полетов 50 - 250 м, расстояния между профилями 100 - 500 м, рабочие частоты от 0,2 до 3 кГц.

• В результате автоматической записи и обработки получаются графики и карты графиков наблюденных параметров. Глубинность метода - около 100 м.

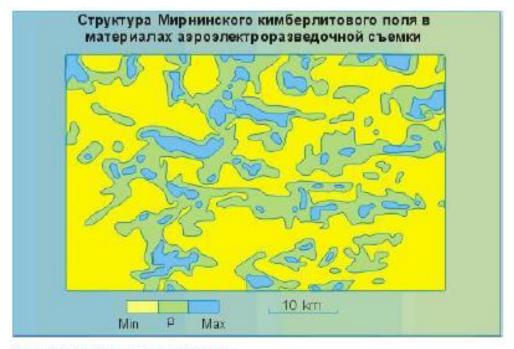
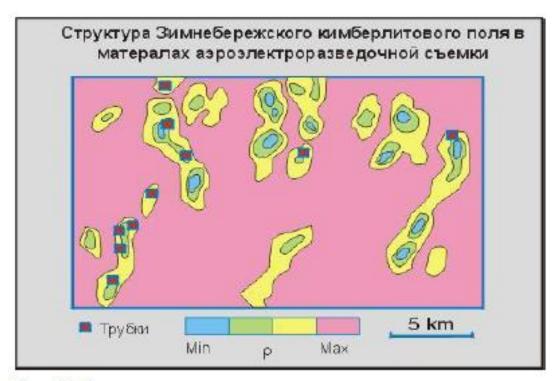
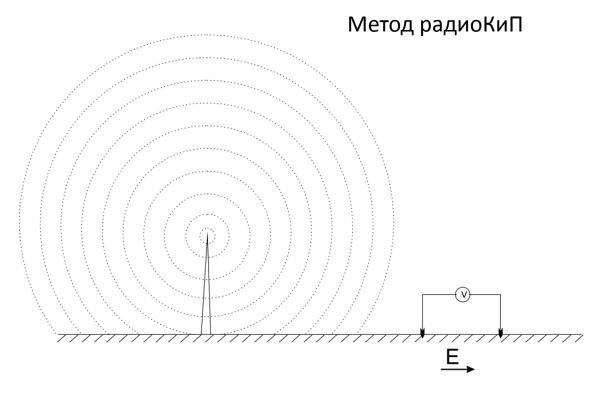
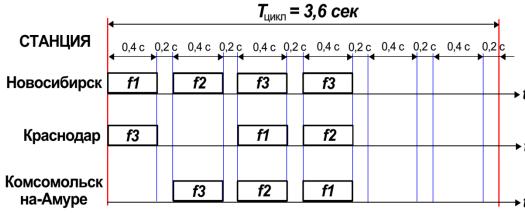
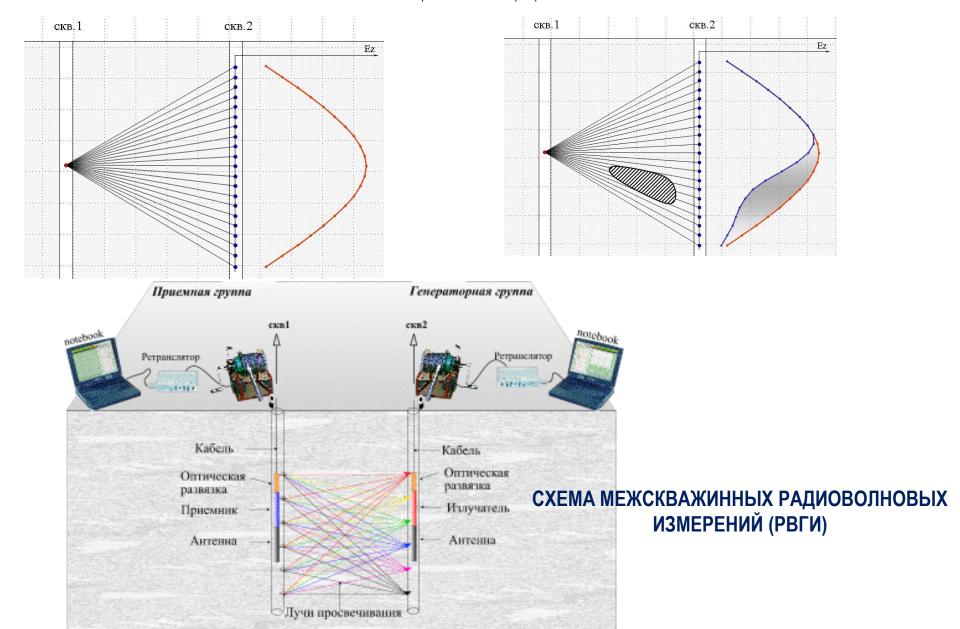


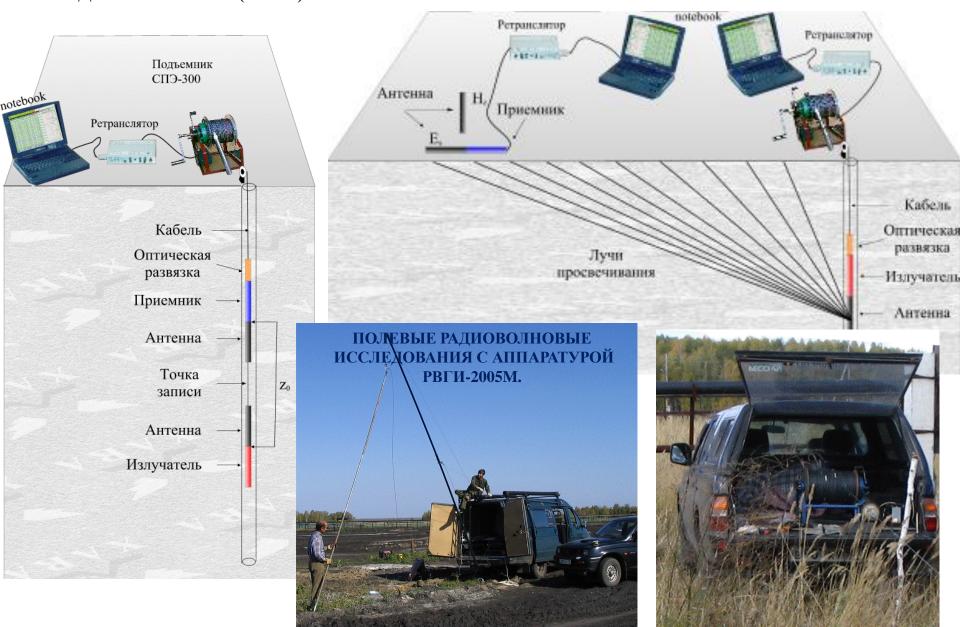
Рис. 27. Данные аэроразведки.

- В аэроварианте **метода переходных процессов (АМПП)** генераторная рамка располагается на вертолете, а в выносной гондоле на тросс-кабеле длиной до 50 м располагаются приемная рамка для измерения E(t)
- . Высота полетов 50 100 м, расстояния между профилями около 100 м.

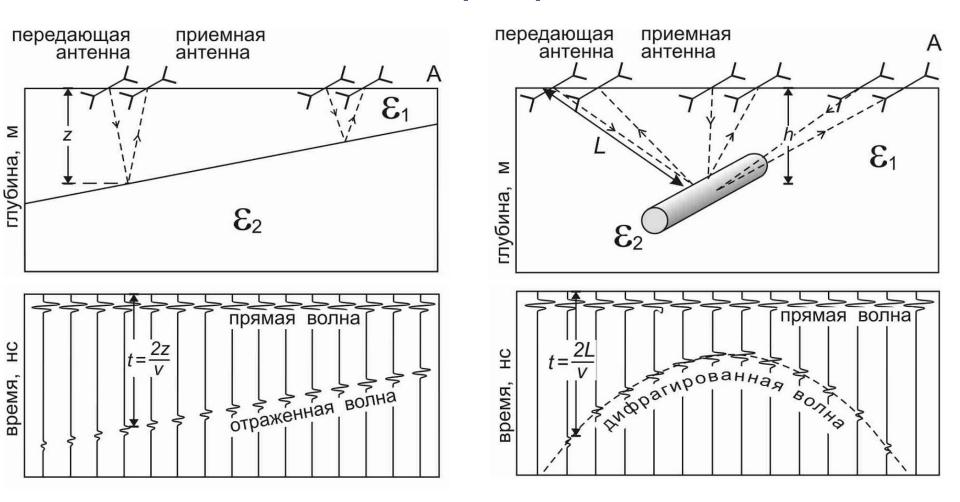





Рис. 28. Данные аэроразведки.

Радиоволновые методы

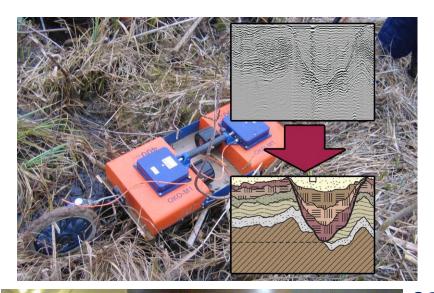


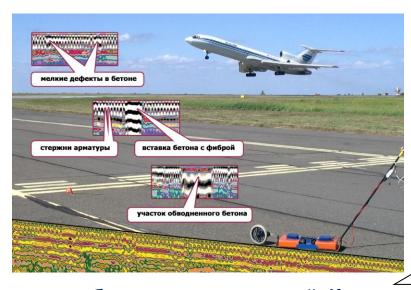
Радиоволновое просвечивание ПРИНЦИП РАДИОТЕНИ



ИЗМЕРЕНИЙ СХЕМА ОДНОСКВАЖИННЫХ РАДИОВОЛНОВЫХ (ОРВП)

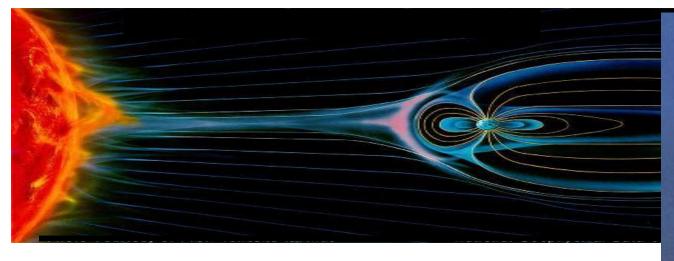
СХЕМА СКВАЖИННО-НАЗЕМНЫХ РАДИОВОЛНОВЫХ ИЗМЕРЕНИЙ



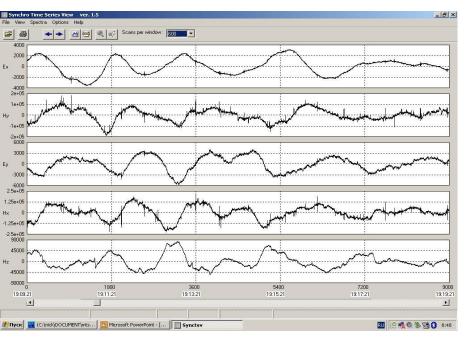

Георадар

Исследования болот и заболоченных участков

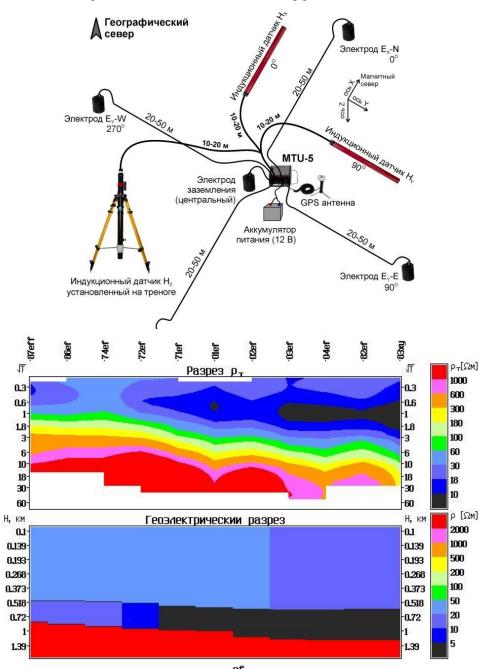
Георадарное обследование аэропортов



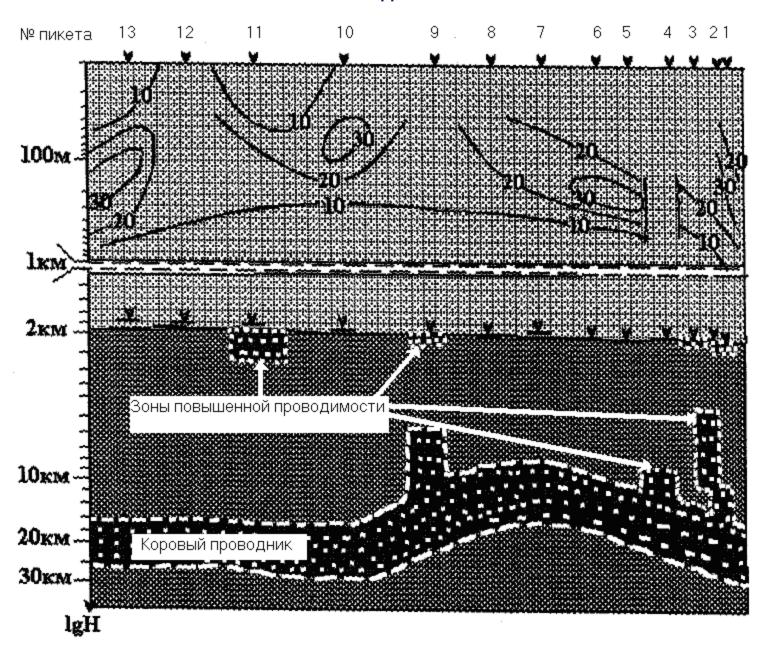
Магнитотеллурическое зондирование


Два основных механизма возникновения магнитотеллурического поля

- Солнце периодически испускает потоки заряженных частиц — солнечный ветер. После взаимодействия с магнитосферой и ионосферой получаем источник ЭМ колебаний в диапазоне частот от 0,0001 Гц до первых сотен Гц


- Грозовые разряды возбуждают резонатор ионосфера-Земля и получаем еще один источник ЭМ – колебаний в диапазоне частот примерно от первых Гц до 12 КГц

Пример записи компонент естественного электромагнитного поля Земли (ЕЭМП)



Результат интерпретации полученных данных

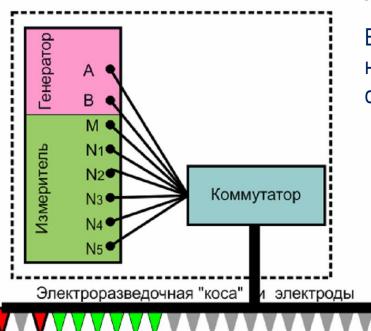
Измерение магнитотеллурического поля

Геоэлектрический разрез, построенный по данным одномерной интерпретации данных MT3.

Электротомография

В последние годы в стране наблюдается успешное внедрение метода электротомографии ВП 2D с использованием многоканальной аппаратуры.

Одно из достоинств этой технологии полная компьютеризация процесса полевых работ и последующей обработки материала, исключающих субъективные факторы.

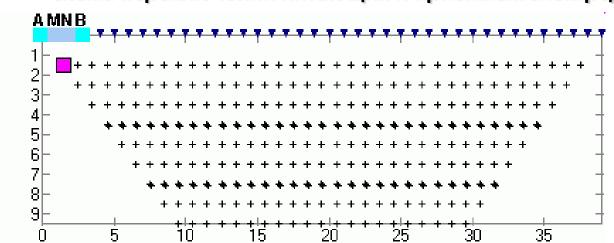

Другое преимущество метода – очень высокая плотность наблюдений, позволяющая предельно детализировать изучаемое пространство, при сравнительно небольших затратах времени и средств.

Суть электротомографии - многократное использование в качестве питающих и измерительных одних и тех же фиксированных на профиле наблюдений положений электродов.

Это приводит к уменьшению общего числа рабочих положений электродов при существенном увеличении плотности измерений по сравнению с обычным методом ВЭЗ.

Такой подход позволяет использовать преимущества современной аппаратуры. Интерпретацию данных электротомографии можно проводить в рамках двумерных (трехмерных) моделей.

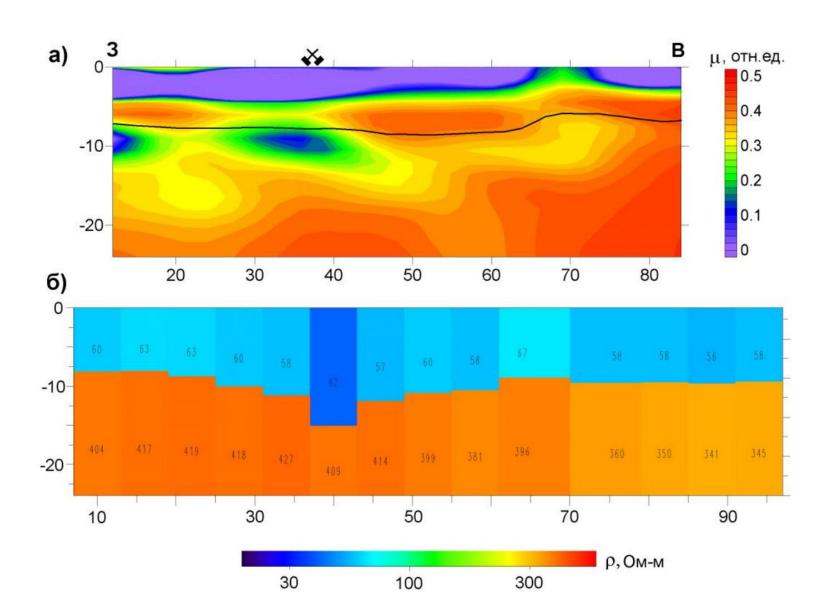
2-D и 3-D исследования на постоянном токе



A M N1N2N3N4N5

В многоэлектродной аппаратуре используется большой набор электродов (обычно от 48 до 128 штук), соединенных с помощью электроразведочных кос.

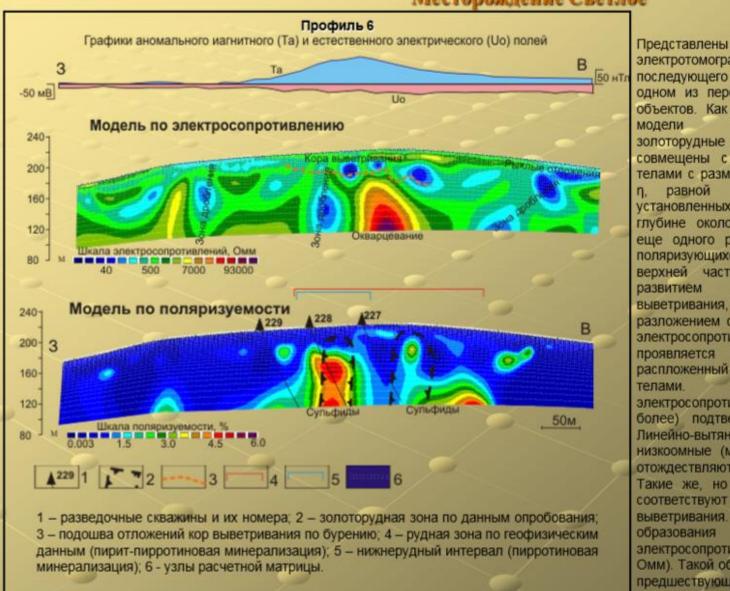
Схема переключений питающих и приемных электродов


Электротомография

В процессе обработки данных электроразведки осуществляется инверсия – 2D-распределение удельных электросопротивлений (ρ) и поляризуемостей (η) в нижнем полупространстве с точностью, соответствующей полевой погрешности измеренных величин.

В дальнейшем инверсионные разрезы можно обрабатывать по программе IPI и наделять «геологическим содержанием». Ниже дается пример разреза по профилю, обработанного по методике электротомографии.

На разрезе наглядно проявляются зоны оруденения, дробления, выветривания, что позволяет повысить эффективность поисков золота в конкретных условиях


Геоэлектрический разрез

Поиски и оценка золоторудных объектов

Месторождение Светлое

электротомографических работ последующего бурового опробования на одном из перспективных золоторудных объектов. Как видно, на инверсионной поляризуемости модели ПО пространственно золоторудные зоны совмещены с сильно поляризующими телами с размерами около 50х150м при Восточнее п. равной 2-6%. рудных объектов на установленных глубине около 50м вероятно наличие еще одного рудного тела. Отсутствие поляризующихся объектов в самой верхней части разреза объясняется развитием химического кор выветривания, и как следствие, полным разложением сульфидов. На модели по электросопротивлению наиболее ярко **УЧасток** окварцевания, проявляется распложенный между золоторудными Аномально высокие телами. электросопротивления (до 100000 Омм и более) подтверждены данными ГИС. Линейно-вытянутые субвертикальные низкоомные (менее 300 Омм) объекты отождествляются с зонами дробления. Такие же, но субгоризонтальные тела соответствуют отложениям выветривания. Поверхностные рыхлые образования характеризуются электросопротивлениями (300-7000 Омм). Такой объем информации, судя по предшествующему опыту, стандартными методами получить невозможно.

результаты

ЭЛЕКТРОРАЗВЕДОЧНАЯ АППАРАТУРА И АППАРАТУРА ДЛЯ ЭЛЕКТРОТОМОГРАФИИ

ОБЩАЯ ИНФОРМАЦИЯ

Электроразведочное оборудование – предназначено для создания электромагнитного поля и измерения параметров постоянного и переменного напряжения при проведении геофизических изысканий. Позволяет проводить инженерногеофизические изыскания методами сопротивлений, ВП, ВЭЗ+ВП электротомографии, ЕП и пр...

Электроразведочная высокочастотная станция "Вега"

Электроразведочная высокочастотная станция "Вега" - новое техническое решение ГК "Логис-Геотех", которое позволяет производить работы бесконтактным методом.

Многоканальный электроразведочный аппаратурно-программный комплекс "ОМЕГА-48"

Электроразведочный аппаратурно-программный комплекс предназначен для выполнения наблюдений методами электрических зондирований (ВЭЗ) и вызванной поляризации (ВП) с применением технологий электротомографии, т.е. с размещением приемных и передающих электродов в косе.

Многоэлектродная электроразведочная станция "СКАЛА 48"

Многоэлектродная электроразведочная станция для работы методом сопротивлений: ВЭЗ, ЭП, 2D и 3D томографией. Генератор, измеритель и коммутатор в одном компактном корпусе.

Электроразведочный измеритель ЭНИКС-01

Электроразведочный измеритель ЭНИКС-01 является одним из наиболее компактных и легких приборов своего класса без ущерба для механической защищенности. ЭНИКС-01 предназначен для выполнения электроразведочных работ следующими методами: методом сопротивлений на переменном токе (ВЭЗ, ЭП, СГ, МЗ и др.), методом вызванной поляризации в варианте фазовочастотных измерений (ВЭЗ-ВП, ЭП-ВП, СГ-ВП и др.), методом естественного электрического поля (ЕП); методом блуждающих токов.

Электромагнитная аппаратура "ЭРА-МАКС"

Электромагнитная аппаратура «ЭРА-МАКС» предназначена для проведения инженерных изысканий под строительство и обследование действующих трубопроводов, дорог, гидротехнических сооружений; поиска и разведки месторождений рудных и нерудных полезных ископаемых. Применяется при экологических и археологических изысканиях, для обследования фундаментов зданий и подземных сетей городского хозяйства.

Многофункциональный электроразведочный измеритель "МЭРИ-24"

Многофункциональный электроразведочный измеритель "МЭРИ-24" предназначен для измерения параметров постоянного и переменного напряжения в полевых условиях при электроразведочных работах

Электроразведочный генератор "АСТРА-100"

Электроразведочный генератор "ACTPA-100" предназначен для создания электромагнитного поля при проведении геофизических работ методами постоянного тока, вызванной поляризации и частотного зондирования (в том числе импедансного) и т.д.

Восьмиканальный измеритель для метода вызванной поляризации "ИМВП"

Многоканальный электроразведочный измеритель ИМВП предназначен для проведения работ методом вызванной поляризации (ВП) в частотной и/или временной области.

<u>Электроразведочный генератор "ВП-1000"</u>

Генератор вырабатывает в нагрузке разнополярные прямоугольные импульсы тока и может работать в двух режимах: РПИ-1 - прямоугольные импульсы тока без пауз (режим переменного тока) и РПИ-2 - прямоугольные импульсы тока с паузами, длительность которых равна длительности импульсов.

Низкочастотный электроразведочный генератор "Эникс-02"

Генератор электроразведочный низкочастотный «Эникс-02» предназначен для возбуждения переменного электрического тока в гальванически заземленных питающих линиях электроразведочных установок.

Естественных переменные поля солнечнокосмического происхождения - разведка земных недр на глубинах до 500 км, изучение таких геосфер, как осадочная толща, кристаллические породы, земная кора, верхняя мантия. □ Электромагнитные зондирования используются при глубинных и структурных исследованиях, поисках нефти и газа. Электромагнитные профилирования применяются при картировочно-поисковых съемках, поисках рудных и нерудных полезных ископаемых. Малоглубинные электромагнитные зондирования и профилирования используются при инженерных и экологических исследованиях.

Области применения электромагнитных зондирований

- При малоглубинных (до 100 м) исследованиях целесообразно применять ВЭЗ, ВЭЗ-ВП, в условиях повышенных сопротивлений (больше 100 Омм) и при плохих условиях заземления ВИЗ, в условиях высокоомных (больше 1000 Омм) разрезов (например при изучении льдов, мерзлоты, поисках подземных вод в пустынях) РВЗ, РЛМ.
- При разведке глубин до 500 м можно применять ВЭЗ, ВЭЗ-ВП, а также ЗСБ и ЧЗ (особенно при наличии в разрезе вы-сокоомных карбонатных или галогенных экранов). С помощью этих методов решаются следующие задачи:
- 1. Определение мощности и состава покровных и корен-ных осадочных отложений, глубины залегания фундамента, что очень важно для структурно-геологического объемного картирования;
- 2. Оценка геометрических параметров и физических свойств массивов горных пород, представляющих большой ин-терес для инженерно-геологического, мерзлотно-гляциологичес-кого, гидрогеологического картирования;
- 3. Поиски пластовых, как правило, нерудных полезных ископаемых.
- При структурных исследованиях на суше и морях до глу-бин 5–10 км используются ДЗ, ЗСД и ЗСБ, а чаще магнитотел-лурические методы и прежде всего МТЗ. Изучение глубинной неоднородности Земли можно проводить с помощью ГМТЗ.

Особенности применения электромагнитных профилирований и скважинно-подземных методов электроразведки

- Данные различных методов электромагнитного профилирования (ЭП, ВП, ЕП, ПЕЭП, ПЭМП, НЧМ, МПП, аэроэлектро-разведка, РВП, РТС, РЛС), представленные в виде графиков, карт графиков (их называют иногда корреляционными планами) и карт тех или иных наблюденных или расчетных параметров, несут в себе информацию о геоэлектрических неоднородностях вдоль профилей или по площади в определенном интервале глубин.
- Подземно-скважинные, или объемные методы служат для **оценки геоэлектрических неоднородностей в объеме пород между горными выработками, скважинами и земной поверхностью**.
- Интерпретация данных этих методов в основном качественная, реже количественная.

- Применение методов электромагнитного профилирования
- Многообразие методов профилирования, основанных на различных параметрах
- геологических объектов, и использование различных полей приводит к тому, что эти
- методы находят широкое геологическое применение.
- Метод естественного электрического поля (ЕП или ПС) применяют:
- 1) при поисках и разведке сульфидных месторождений, антрацита, графита на
- глубинах до 300—500 м;
- 2) при геологическом и инженерно-геологическом картировании наносов не-
- большой мощности;
- 3) при выявлении мест утечек воды из рек, водохранилищ (по минимумам потен-
- циалов) и подтока подземных вод (по максимумам потенциалов); 4) для изучения кор-
- розии трубопроводов, других подземных металлических сооружений.

- Электропрофилирование (ЭП) на постоянном и низкочастотном токе применяют для картировочно-поисковых исследований на глубинах до 500 м и, в частности, при изучении крутозалегающих пластов, слоев. Его используют:
- 1) для изучения погребенных структур (антиклиналей, синклиналей, флексур, ку-
- полов, прогибов и т. п.);
- 2) при геологическом картировании контактов и фациально-литологическом рас-
- членении пород;
- 3) для выявления и прослеживания разрывных нарушений (сбросов, надвигов,
- разломов);
- 4) при разведке рудных (сульфидные, полиметаллические, железорудные и др.) и
- нерудных (угольные, кварцевые и др.) ископаемых;
- 5) для решения таких инженерно-геологических задач, как картирование мерзлых
- пород и таликов, трещиноватых и закарстованных зон, переуглубленных долин;
- 6) при поисках обводненных зон, пресных и минерализованных вод.

- Метод вызванных потенциалов (ВП) один из эффективных методов рудной геофизики. Его используют для поисков и разведки как сплошных, так и вкрапленных и прожилково-вкрапленных руд.
- Однако аномалии ВП могут быть не над промышленной вкрапленностью руд,
 а за счет «зараженности» пород редкой вкрапленностью сульфидов, графита,
 угля, что затрудняет разведку перспективных залежей. В этом случае
 необходимо комплексировать метод ВП с другими геофизическими методами.
- Метод
- ВП—применяют:
- 1) при поисках и разведке металлических руд (в частности, сульфидных), а также
- графита, угля;
- 2) для решения задач геологического картирования и расчленения геологических
- разрезов;
- 3) для выявления водонасыщенных пород, пресных и минерализованных вод, оп-
- ределения глубины залегания уровня подземных вод.

- Аэроэлектроразведка низкочастотными (индуктивными) и особенно высокочастотными методами обладает меньшей глубинностью, чем те же полевые варианты.
- Обычно это первые десятки метров в дипольных вариантах (ДИП-А и АМПП) и первые сотни метров в ДК-А. Аэроэлектроразведку используют для геологического картирования и поисков проводящих руд.
- Радиоволновые методы профилирования (СДВР, РЭМП) обладают очень малой глубинностью (до 10—30 м), и их применяют для решения задач геологического и инженерно-геологического картирования, поисков рудных и нерудных ископаемых.
- Сверхвысокочастотные методы вследствие высокого скин-эффекта обладают малой глубинностью в каждой точке. Однако благодаря большой обзорности они обеспечивают достаточно высокую общую глубинность.

- При радиотепловой или инфракрасной съемке (РТС или ИКС) интенсивность измеренных полей зависит от тепловых и электромагнитных свойств, а также отражательной способности геологических сред, длины изучаемых радиоволн и состояния атмосферы. Наибольшее применение они на ходят для всепогодного картирования источников тепла; участков сейсмичности, тектонической, химической, гидротермальной активности; зон с разной влажностью и мерзлотными условиями и др.
- В радиолокационных съемках (РЛС) интенсивность отраженных от земной поверхности сигналов зависит как от электрических и тепловых свойств земной поверхности, так и от ее геометрических и механических особенностей, формирующих отраженные сигналы.
- Наибольшее применение РЛС находит при картировании структурных очертаний контактов, складок, разломов, участков разной шероховатости (например, водных поверхностей, глыбового навала и т. п.). Методы РТС (ИКС) и РЛС применяют для геологического, геоморфологического, мерзлотно-гляциологического, почвенно-мелиоративного картирования.

- По максимумам на графиках и картах амплитуд электромагнитных волн в пьезоэлектрических методах (ПЭМ и МСЭП) кроме местоположения геологических объектов с повышенными пьезоэлектрическими модулями можно оценить расстояния до них *R*.
- Для этого определяют скорость распространения упругой волны v и время прихода пьезоэлектрической (электромагнитной) волны t после возбуждения упругих колебаний. Расстояние от пункта возбуждения (ПВ) до верхней кромки пьезоэлектрического объекта R = vt. Получив R из разных ПВ при профильной съемке, можно оконтурить разведываемый объект.
- **Наземный вариант ПЭМ** применяют при выявлении и разведке пьезоэлектрически активных горных пород (хрусталеносных, кварцевых, пегматитовых, нефелинсодержащих и др.).
- К ним могут быть приурочены месторождения горного хрусталя, оптического кварца, слюды, нефелина, а также золо-та и некоторых рудных минералов. Глубинность разведки 10—30 м.
- Метод МСЭП используют при инженерно-геологических и гидрогеологических исследованиях.

Комплексное применение электромагнитных профилирований и объемных методов

- Геологические задачи, решаемые многочисленными методами электромагнитного профилирования, разнообразны.
- В зависимости от глубинности, решаемых задач и особенностей геолектрического разреза одновременно с зондированиями, дающими опорную информацию, применяются один-два метода профилирования.
- Для изучения верхней части (до 10–20 м) геологической среды используются методы аэроэлектроразведки (ИКС, РЛС, ДИП-А, СДВР-А), полевые съемки методами СДВР, ДИП, ДЭМП, реже ЭП, ВП.
- При малоглубинных (до 100 м) исследованиях наряду с геологическим, инженерно-геологическим, геоэкологическим и мерзлотным картированием, поисками нерудных полезных ис-копаемых чаще всего применяются различные варианты ЭП.
- Контакты разных пород, массивные пласты или изометрические объекты эффективнее выделяются симметричными или градиентными установками, а тонкие пласты и линзы, особенно проводящие, целесообразно разведывать трехэлектродными или дипольными установками.

Комплексное применение электромагнитных профилирований и объемных методов

- При более глубинном картировании (до 500 м) используются методы ПЕЭП, ЭП, ЕП.
- Поиски и разведка рудных полезных ископаемых на глубинах до 100 м проводятся НЧМ (ДК, ДИП, НП), МПП (ДИП-МПП), ЭП, ЕП, а на глубинах до 500 м НЧМ (НП), МПП (НП-МПП), ВП, ЕП.
- Основными методами рудной разведки являются методы ЕП, ВП и МПП. Наилучшие результаты метод ЕП дает при поисках и разведке сплошных сульфидных рудных за-лежей, угля и графита, а метод ВП как этих же полезных иско-паемых, так и вкрапленных руд. МПП применяется для поисков и разведки массивных залежей руд.
- На стадии доразведки и эксплуатации рудных месторождений большая роль принадлежит скважинно-подземным и геоэлектрохимическим (КСПК, БСПК, ЧИМ) методам.
- Для детальных гидрогеологических и геоэкологических исследований используются методы ЭП, ЕП, ВП, МЗТ

Контрольные вопросы

- •1. Какова природа образования естественных постоянных электрических полей? Каким образом создаются искусственные постоянные электрические поля?
- •2. Что такое установка в электроразведке? Как определяется коэффициент установки?
- •3. Как создаются искусственные импульсные электромагнитные поля? Модификации методов искусственного электромагнитного поля
- •4. Назовите электромагнитные свойства горных пород. От каких факторов зависит удельное электрическое сопротивление горных пород?
- •5. Что такое нормальное и аномальное поле в электроразведке?
- •6.Какие геологические задачи решаются с помощью вертикального электрического зондирования? В чем суть методики ВЭЗ? Как проводится зондирование методом вызванной поляризации?
- •7. Модификации метода ЭП .Какие геологические задачи решаются методами профилирования?
- •8.Назовите магнитотеллурические методы. На чем основано зондирование методом становления поля? В чем суть частотного электромагнитного зондирования?
- •9.Области применения электромагнитных зондирований
- •10.Области применения электромагнитного профилирования

