МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Институт геологии, нефти и горного дела им. К. Турысова Кафедра Геофизики

«Геолого-геофизические методы поисков и разведки рудных месторождений»

для специальности 6М074700 «Геофизические методы поисков и разведки МПИ»

Лекция 15

Применение геофизических исследований скважин при решении задач рудной геологии

Основными задачами, решаемыми ГИС на рудных месторождениях, являются:

- получение исходных данных для подсчета запасов определение местоположения, границ и мощности рудных зон, среднего содержания в них полезного компонента и вредных примесей, плотности руд, выделение рудных тел в соответствии с установленными на месторождении кондициями;
 - получение исходных данных для геолого-геохимических оценок оруденения и геолого-технологических прогнозов качества добываемых руд и продуктов их обогащения и переработки;
 - уточнение геологического (литологического, стратиграфического) разреза скважин и заверка или установление природы геохимических и геофизических аномалий, выявленных на стадиях региональных и поисковых исследований;
 - создание информационной основы для построения геолого-геофизических разрезов и моделей месторождений;
 - горно-геологический, горно-технический и геоэкологический контроль за эксплуатацией месторождений

ГИС применяется

□На всех рудных месторождениях, включая металлические (железо, хром, марганец, никель, алюминий, медь, олово, серебро, бериллий и др.)
□ и неметаллические полезные ископаемые (алмазы, уголь, апатиты, флюорит, фосфориты, калийные соли, пресные воды и др.).
□ На всех стадиях геолого-разведочных работ: поисках, оценке, разведке и эксплуатации месторождений
□ Состав комплекса ГИС зависит от
-вида полезного ископаемого,
-типа руд, характера вмещающих пород,
-условий залегания,
-наличия сопутствующих элементов,
-назначения скважины (геологическими задачами, поставленными перед бурением),

геолого-геофизической характеристики изучаемого разреза и условий измерений.

Комплекс геофизических методов исследования скважин включает следующие виды каротажа скважин:

Электрические:

каротаж сопротивлений (КС),
-токовый каротаж (ТК) в модификации скользящих контактов (МСК),
-каротаж по методу самопроизвольной (спонтанной) поляризации (ПС),

-электродных потенциалов (МЭП).

Акустический каротаж (АК) по скорости распространения и затуханию сигнала и межскважинное прозвучивание

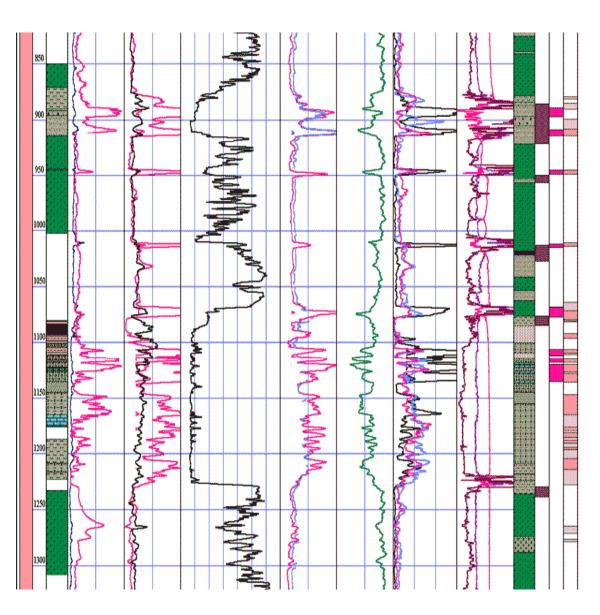
Электромагнитные и магнитные:

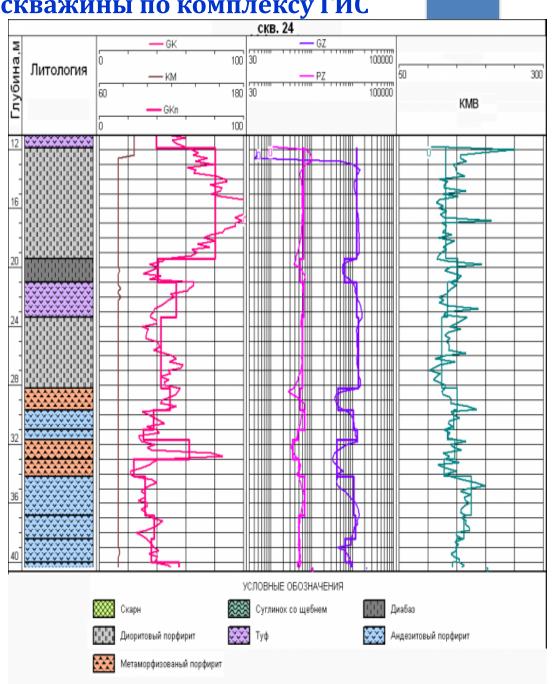
- каротаж магнитн. восприимчив. (КМВ)
- магнитного поля (КМП),
- -индукционный (ИК),
- -вызванной поляризации (КВП) и
- -совокупность ИК и КМВ -
- электромагнитный каротаж (ЭМК).

Ядерно-геофизические:

- гамма-каротаж (ГК), интегральной (ИГК) и спектрометрическийй (СГК)
- гамма-гамма-каротаж (ГГК) , (ГГК-П) , (ГГК-С), в интегральном и спектрометрическом вариантах (ИГГК-П, СГГК-П, ИГГК-С, СГГК-С);
- гамма-нейтронный, или фотонейтронный, каротаж (ГНК);
- рентгенорадиометрический каротаж скважин (РРК)
- -; нейтрон-нейтронный каротаж (ННК); нейтронно-активационный каротаж (НАК); нейтронный гамма-каротаж (НГК), в спектрометрическом варианте вторичного гамма-излучения (СНАК и СНГК)

Комплекс геофизических методов исследования скважин

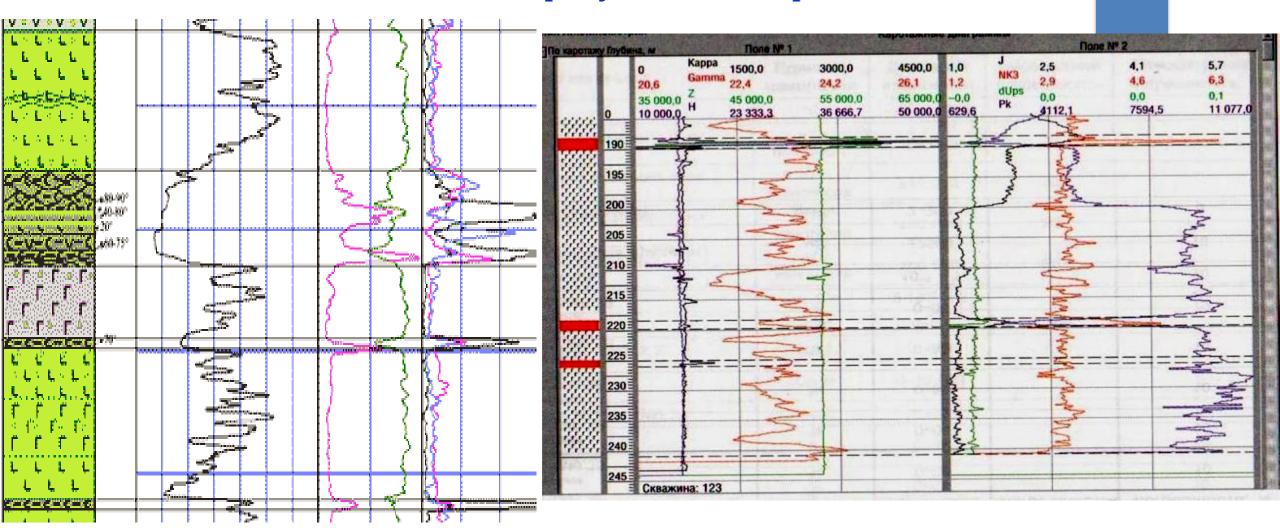

- □Гамма-каротаж (ГК), ИГК или СГК проводится в обязательном порядке во всех геологоразведочных скважинах с целью обеспечения массовых поисков, т.е. для обнаружения радиоактивных аномалий, с которыми могут быть связаны рудопроявления и месторождения радиоактивных элементов (урана, тория, радия).
- □Использование гамма-гамма-каротажа ГГК-П проводят, когда надо получить сведения о плотности горных пород и руд в естественном залегании (для подсчета запасов руд, для литологического расчленения разреза скважины).
- □Необходимость выполнения других видов каротажа обусловлена стадией геологоразведочных работ, задачами геолого-геофизических исследований, геологическими особенностями изучаемого объекта, видом полезного ископаемого и его физико-химическими и геолого-минералогическими свойствами.
- □ Использование данных каротажа на различных стадиях геологоразведочных работ позволяет повысить их оперативность и способствует решению геолого-геофизических задач.


Стадия поисковых работ

- а) литологическое расчленение и корреляция разрезов;
- ▶ б) расшифровка природы и оценка перспективности геофизических аномалий, выявленных при аэрогеофизических, аэрогеологических, наземных геологогеохимических и геофизических съемках или скважинных наблюдениях;
- **в)** выделение рудовмещающих пород и рудных интервалов с определением их мощности и глубины залегания;
- ▶ г) определение вещественного состава руд и концентраций полезного ископаемого.

Повышение достоверности геологоразведочных работ на этой стадии обеспечивается уточнением, а при некондиционном выходе керна составлением геологической документации по данным каротажа и возможностью исследования в естественном залегании объемов сырья, значительно превышающих объемы керна.

Расчленение разреза рудной скважины по комплексу ГИС

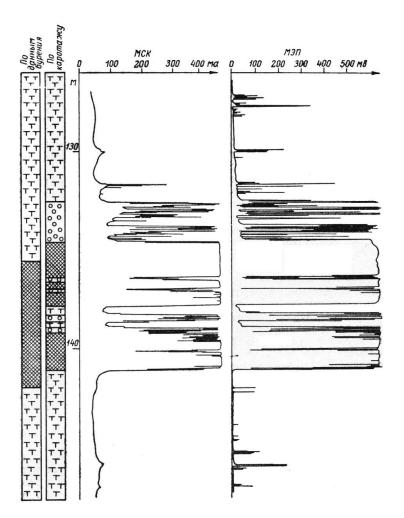


Стадия оценки месторождений

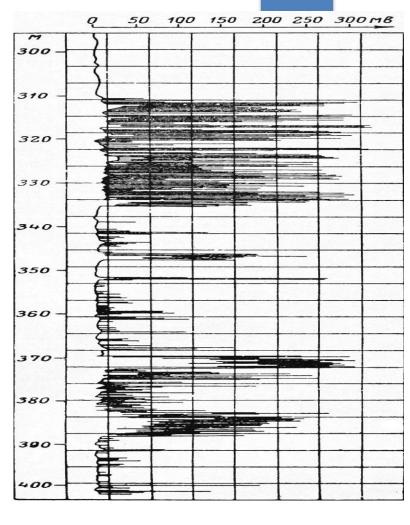
- а) определение геологического строения месторождения и его геолого-геохимических характеристик (закон распределения оруденения, степень неравномерности, наличие и устойчивость корреляционных связей между элементами, генетические связи и т.п.);
- **б)** уточнение данных бурения и прослеживание рудных пересечений в геологических разрезах;
- **в)** определение соотношения рудных и безрудных прослоев в рудных подсечениях, изучение строения рудных залежей;
- ▶ г) задача решается по типам руд с точностью, достаточной для оценки сырья в соответствии с требованиями ГКЗ для подсчета запасов по категориям и предварительной геологотехнологической оценки руд и продуктов их обогащения и переработки.

Выделене продуктивных горизонтов

Пример интерпретации каротажа, выполненного прибором ПРК-4203 в рудной скважине


Стадия разведки месторождений:

- **а)** выявление рудных тел, пропущенных при оценке месторождений;
- **б)** уточнение морфологии рудных тел и их геометризация;
- в) определение параметров для подсчета запасов по категории (мощность, глубина, строение рудных залежей, содержание полезного ископаемого и вредных примесей) и геолого-технологической оценки руд и прогноза качества продуктов их обогащения и переработки.


Позволяют повысить достоверность разведки месторождений, используются при подсчете запасов полезного ископаемого и при прогнозной оценке технологических свойств руд и качества продуктов их обогащения и переработки.

Могут быть положены в основу технико-экономических оценок и обоснований на проектирование систем отработки месторождений.

Уточнение морфологии рудных тел и их геометризация

300-

Диаграммы МСК и МЭП в интервале сульфидных руд

Воспроизводимость диаграмм МСК, снятых при скорости 800 м/час.

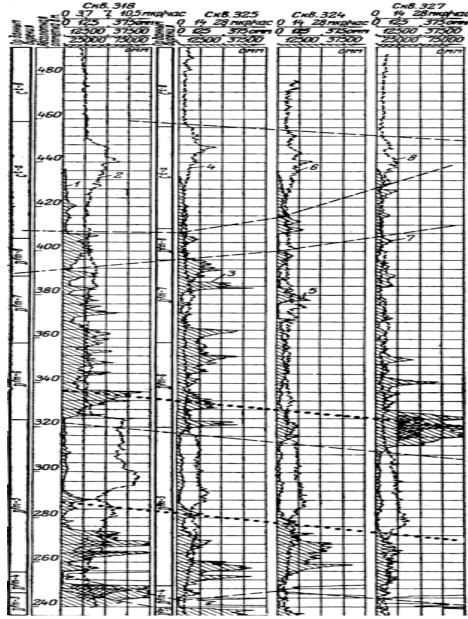
Участок диаграммы МЭП в сплошных и вкрапленных рудах

Стадия эксплуатационной разведки месторождений:

- ▶ а) уточнение контуров рудных тел по глубоким горизонтам и флангам месторождения, уточнение промышленных категорий запасов, перевод запасов из более низких категорий в более высокие;
- ▶ б) решение задач с целью оперативного управления процессом добычи, составления горного календаря, определяющего порядок и очередность отработки эксплуатационных блоков на объекте добычи (на руднике, карьере, шахте) для получения товарной руды или шихты заданного качества для подачи ее на обогатительную фабрику.

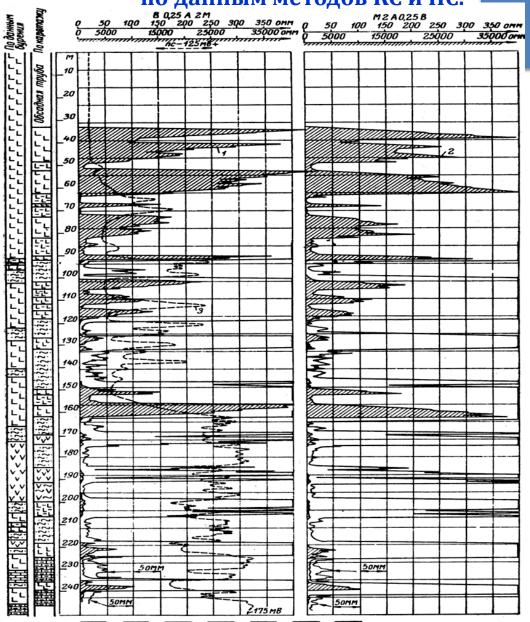
Результативность и эффективность ГИС на рудных месторождениях

▶Определяется:


- •горно-техническими условиями применения методов:
- -состоянием стенок скважин и их кавернозностью в зависимости от механической устойчивости пород,
- -технологии бурения,
- -заполнения скважины водой или буровым раствором,
- -влиянием вечной мерзлоты и пр.,
- •достоверностью геологических данных, используемых для построения корреляционных зависимостей и градуировочных графиков при количественной интерпретации геофизических материалов:
- -выход керна,
- -погрешность геологического опробования,
- -избирательное истирание рудных минералов,
- -минералого-петрографич. изученность пород и руд и другие факторы)

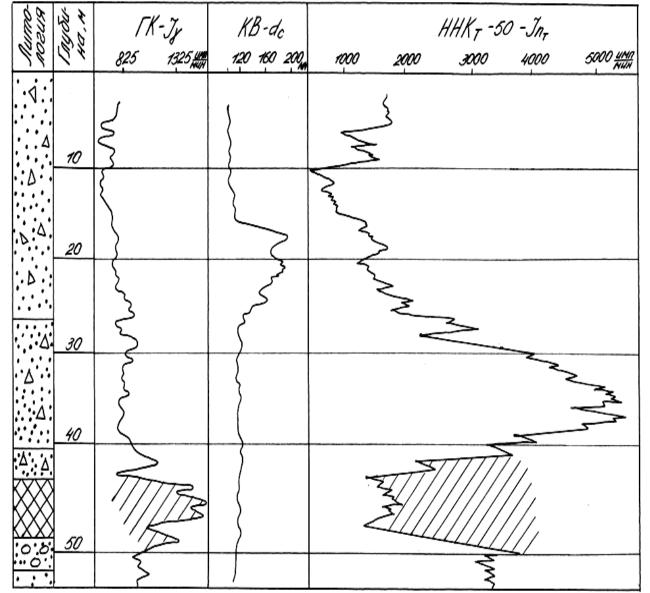
- ►Геофизические исследования скважин выполняются в два приема:
- -вначале исследования проводят по всему разрезу скважины обычно в масштабе глубин 1:200 (реже в масштабах 1:500 или 1:1000),
- -а затем на аномальных участках детальные исследования в масштабе глубин 1:50 (иногда в масштабах 1:20 или 1:10).

Комплекс геофизических методов исследования скважин


- Для расчленения и корреляции геологических разрезов скважин, уточнения литологической и минералого-петрографической характеристики пересеченных скважиной геологических образований, выделения рудовмещающих пород и зон околорудного изменения применяют:
 - -гамма-каротаж (ГК);
 - электрический каротаж (КС, ПС, ТК, МСК, МЭП);
 - электромагнитный и магнитный каротаж (ЭМК, ИК, КМВ, КМП);
 - плотностной гамма-гамма-каротаж (ГГК-П);
 - акустический каротаж (АК) и межскважинное акустическое прозвучивание (МАП).

Корреляция горизонтов по данным КС и ГК.

1,3,5,7- диаграммы КС, 2,4,6,8- диаграммы ГК.

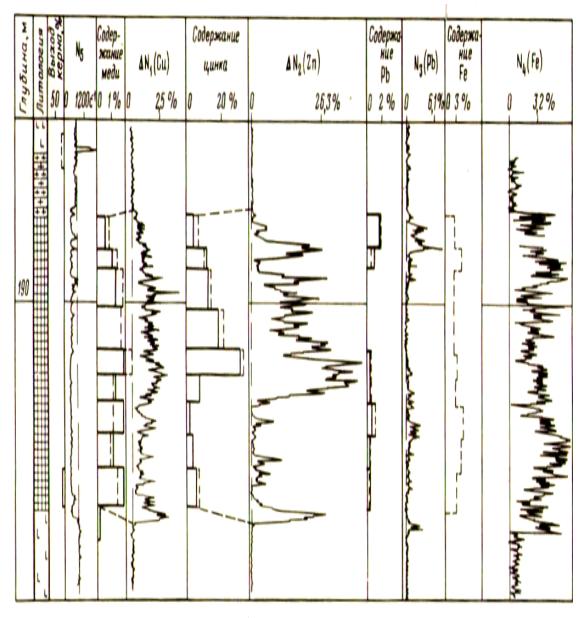

Расчленение разреза рудной скважины по данным методов КС и ПС.

1-2- диаграмма КС, 3- диартамма ТС, 4- диориты разрущенные, 6- песчано - глинистый сланец, 7- графитизированные известняки,

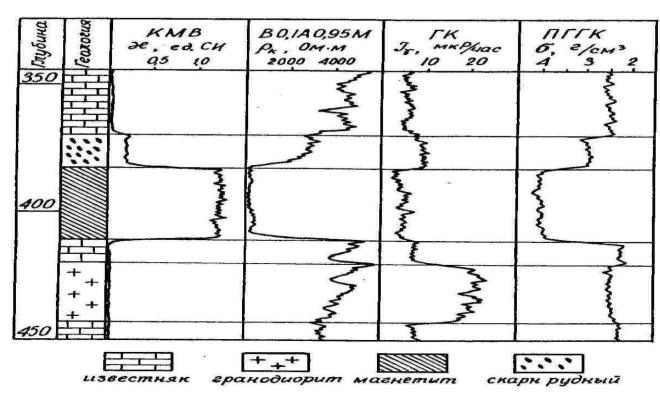
Комплекс геофизических методов исследования скважин

- С целью определения местоположения, границ, мощности и строения рудных интервалов, оценки вещественного и элементного состава руд в разрезах скважин проводят:
 - гамма-каротаж (ГК, СГК);
 - гамма-гамма-каротаж (СГГК-С, СГГК-П),
 - нейтронный каротаж (ННК, СНГК, СНАК);
 - рентгенорадиометрический каротаж скважин или опробование керна (РРК, РРО);
 - электромагнитный и магнитный каротаж (ЭМК, ИК, КМВ, КМП);
 - акустический каротаж (АК) и межскважинное акустическое прозвучивание (МАП).

Определение местоположения, границ, мощности и строения рудных интервалов


Геофизическая характеристика марганцевой руды по комплексу ГИС. Выделение рудных интервалов

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых


Железные руды:

- **КМВ, ЭМК** для выделения и корреляции в разрезах скважин железных руд, разделения их по геолого-технологическим типам и определения в них содержания магнетитового железа;
- СНГК и ГГК-С для определения содержания общего железа (магнетитового и немагнетитового) в породах и рудах;
- ГГК-П для определения плотности руд;
- КМП для геометризации рудных подсечений, корреляции горизонтов магнетитовых руд и расчленения их по типам, определения морфологии, элементов залегания магнетитовых рудных тел, выявления слепых рудных тел в околоскважинном и призабойном пространстве, определения их местоположения относительно скважины;
- **ННК** вспомогательный метод для обработки данных СНГК в сложных условиях (переменная влажность и пористость руд и т.п.);
- МЭП, МСК, ИК для уточнения положения, мощности и строения залежей хорошо проводящих железных руд;
- **РРК или РРО керна** для определения некоторых полезных и вредных примесей (серы, фосфора, мышьяка, марганца, циркония, полиметаллов и др.);
- **АК** для изучения физико-механических свойств вмещающих пород и руд и расчленения руд по геолого-технологическим типам;
- **МАП** для геометризации рудных тел в межскважинном пространстве и изучения изменений выработонного пространства при скважинной гидродобыче руд.

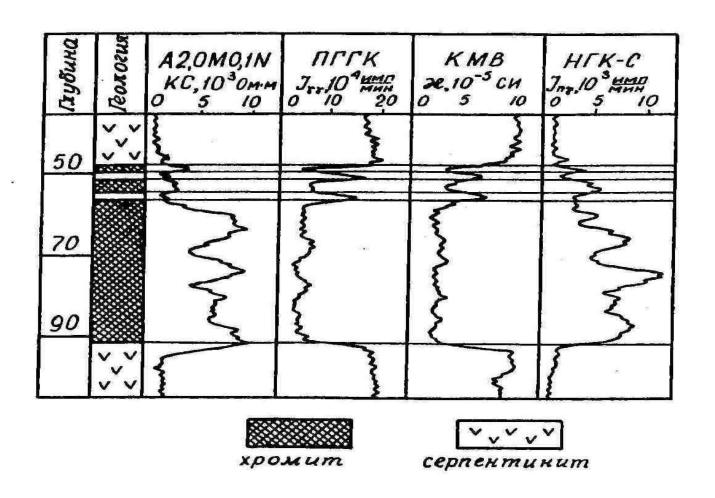
Результаты РРК (железо, медь, цинк, свинец) по скважине.

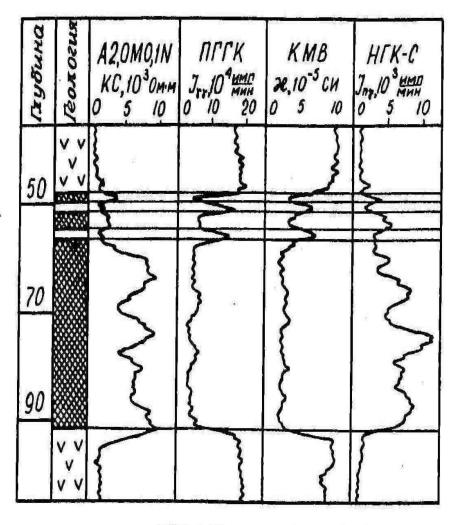
Геофизическая характеристика магнетитовой руды по комплексу ГИС.

1-фельзит-порфиры; 2-алевролиты;

3-рудная зона;

данные 4-по РРК; 5-по керну

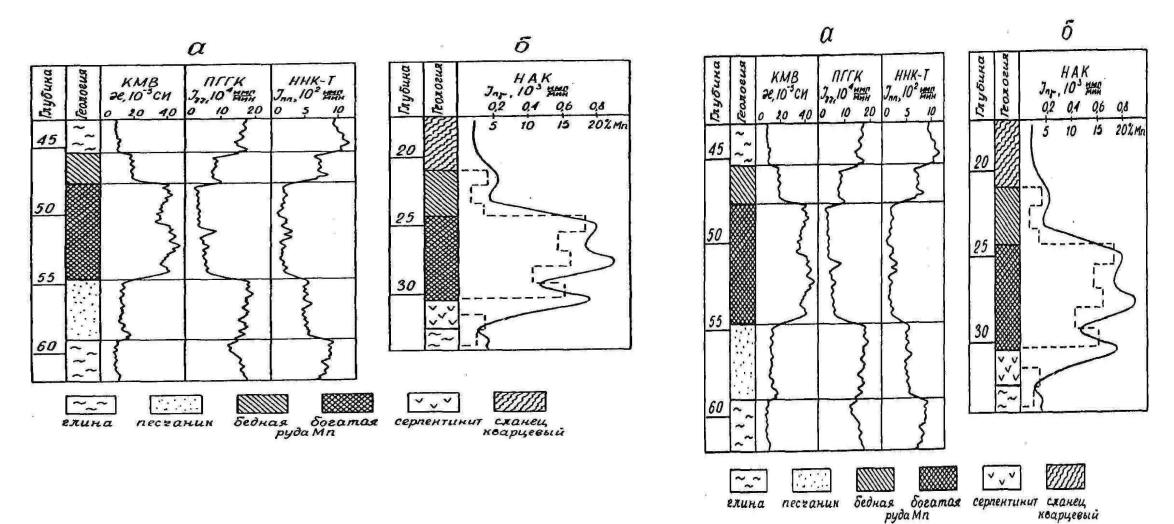




Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых Хромитовые руды:

- СНГК и ГГК-С для определения местоположения, границ и мощности рудных горизонтов в разрезах скважин и содержания хрома в рудах;
- КМВ для выделения руд и расчленения их по геолого-технологическим типам и морфологическим особенностям;
- ГГК-П для определения плотности пород и руд;
- ННК для обработки данных СНГК.

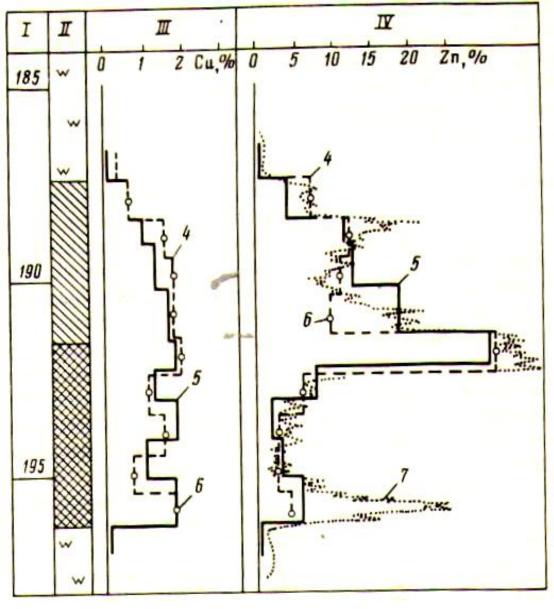
Геофизическая характеристика хромитовой руды по комплексу ГИС.

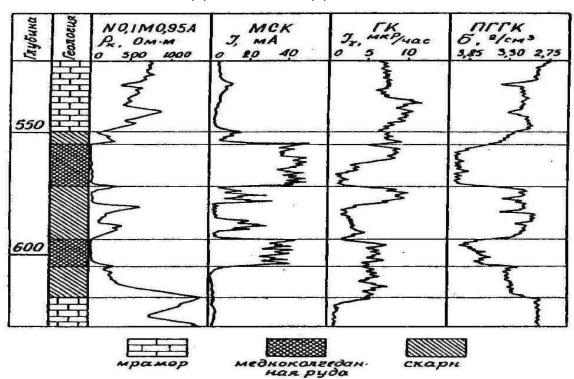

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых Титановые руды:

- СНГК для определения содержаний титана;
 - ГГК-С для определения суммарного содержания железа и титана;
 - КМВ, КМП для определения местоположения и прослеживания в разрезах скважин титаномагнетитовых руд и установления содержаний железа, связанного с магнетитом и титаномагнетитом;
 - ГГК-П для определения плотности.

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых Марганцевые руды:

- СНГК и НАК для определения содержания марганца в рудах;
 - ГГК-С для оценки суммарного содержания марганца и железа;
 - ЭМК, КМВ, ИК для выделения и корреляции рудных горизонтов, расчленения руд по минералогическим типам;
 - ГГК-П для определения плотности пород и руд;
 - ННК для обработки и интерпретации данных СНГК.


Геофизическая характеристика марганцевой руды по комплексу ГИС.


Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых Медные, медно-никелевые, медно-цинковые, медно-колчеданные руды

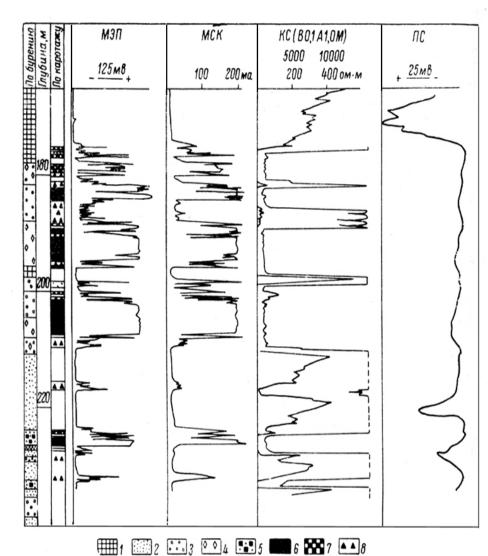
- ▶- ЭМК, МЭП, МСК для выявления и прослеживания в разрезах скважин рудных горизонтов и зон сульфидной минерализации;
- РРК или РРО керна для определения в рудах содержаний меди, цинка, железа, никеля;
- СНГК, НАК для раздельных определений содержания меди и никеля в комплексных рудах;
- ГГК-С для определения суммарного содержания меди, цинка, железа и никеля в комплексных рудах;
- ГГК-П для определения плотности пород и руд;
- КС, ПС, АК для выделения и прослеживания зон сульфидной минерализации, электрохимической активности и для изучения околорудного изменения пород, их пористости и трещиноватости.

Сопоставление данных НАК и кернового опробования по скважине

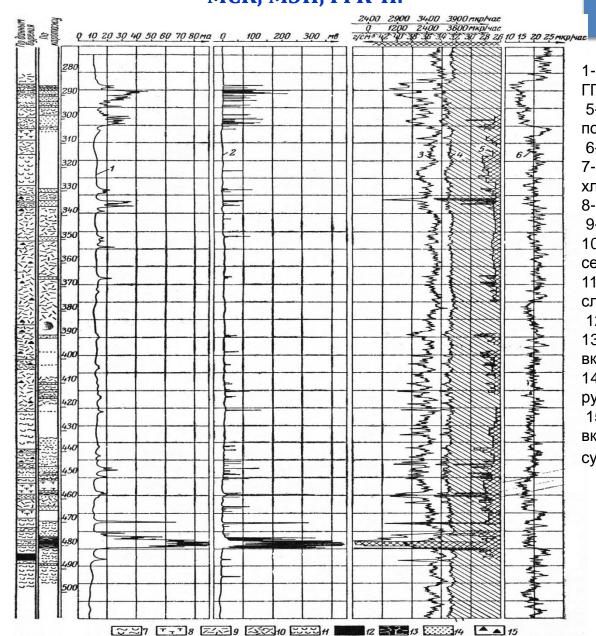
Геофизическая характеристика медно-колчеданных

- 1-дацитовый порфирит,
- 2-руда прожилково-вкрапленная,
- 3-сплошная

медно-цинковая; содержание меди и цинка:


- 4-по НАК; 5-по керну;
- 6- точки активационного опробования;
- 7-диаграмма рентгенорадиометрического каротажа по меди и цинку

I-глубина, м; II-литологическая колонка; результаты сопоставления: III- по меди, IV-по цинку.

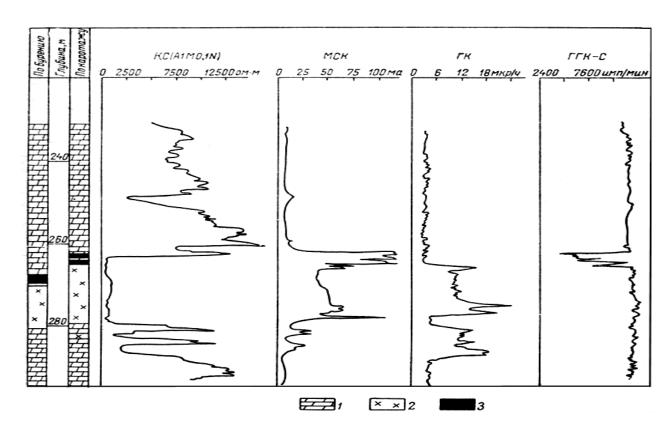


Разделения руд по типам с помощью методов электрокаротажа на медном месторождении

- 1 роговики; 2 песчаники; 3 скарны; вкрапленность;
- 4 халькопирита;
- 5 пирита; руды: 6 сплошные медные; 7 богатые вкрапленные; 8 вкрапленные

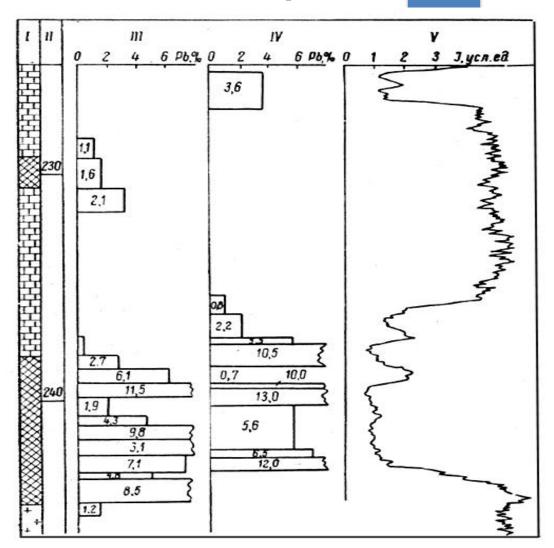
Выделение сплошных и вкрапленных сульфидных руд с помощью методов МСК, МЭП, ГГК-П.

1-МСК, 2- МЭП, 3-4 ГГК-П,

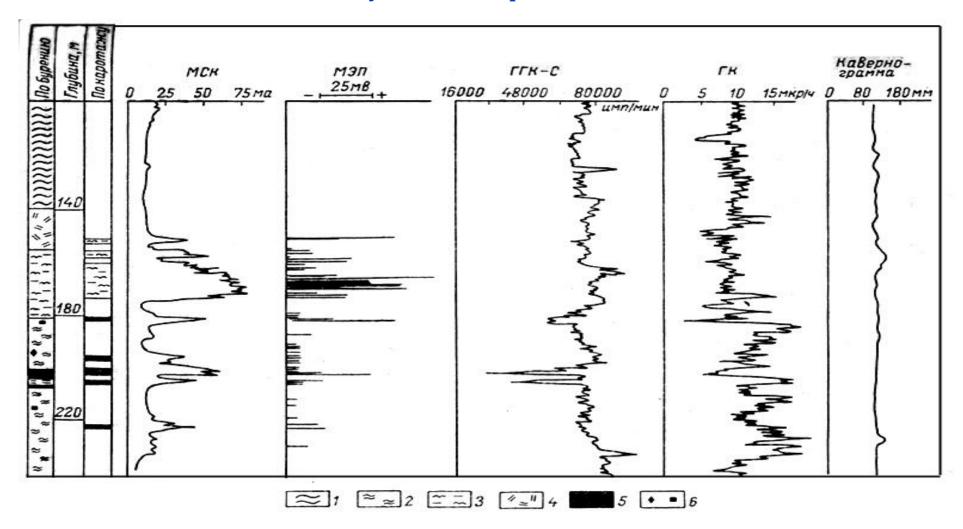

5- график плотности пород по керну,

- 6- диаграмма ГК, 7- серицито-
- хлоритовые сланцы,
- 8- порфироиды,
 - 9- микрокварциты,
- 10- кварцево –
- серицитовые сланцы, 11- хлоритовые
- сланцы,
- 12- сплошная руда,
- 13- богатые
- вкрапленные руды,
- 14- вкрапленные руды
- 15- отдельные вкрапления
- сульфидов.

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых Свинцово-цинковые и полиметаллические руды:


- **▶- РРК или РРО керна для определения содержаний свинца, цинка, серебра;**
- ГГК-С для определения суммарного содержания свинца и цинка;
- ГГК-П для определения плотности горных пород и руд;
- МЭП, МСК, ЭМК для выделения в разрезах скважин зон сульфидной минерализации;
- АК для изучения физико-механических свойств руд и пород в зонах околорудных изменений.

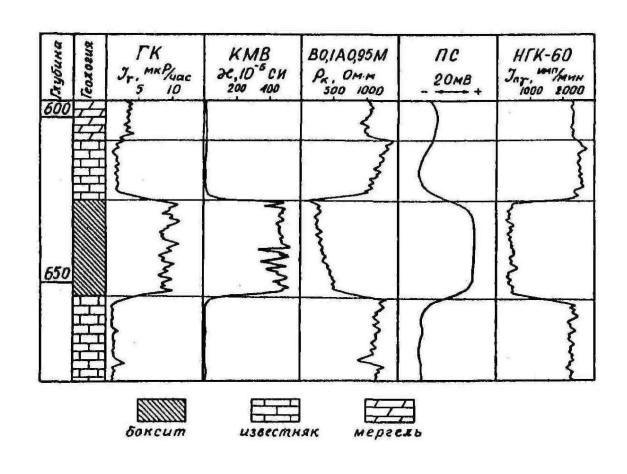
Пример расчленения разреза с помощью комплекса каротажных методов на полиметаллическом месторождении

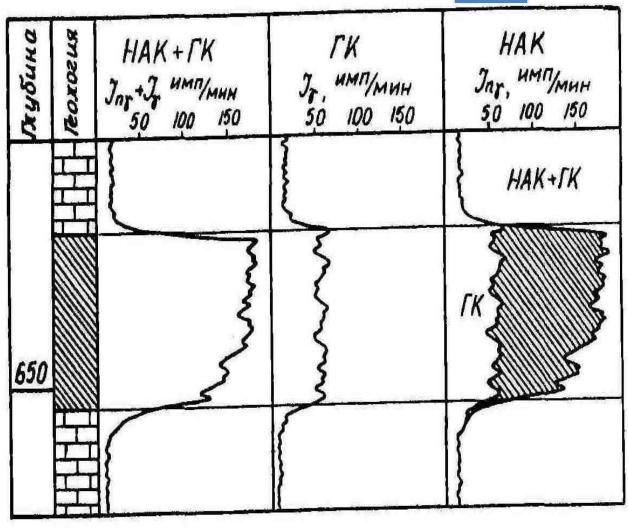

1 – доломиты; 2 – порфириты; 3 – полиметаллические руды

Сравнения данных ГГК-С и химических а**нализо**в на свинцовом месторождении

I – геологическая колонка по данным² бурения; II – глубина, м; содержание свинца по данным: III – химического анализа; IV – каротажа; V – диаграмма ГГК-С; 1- рудные тела; 2 – известняки

Выделения рудных интервалов в разрезе, характеризующемся наличием углистых образований

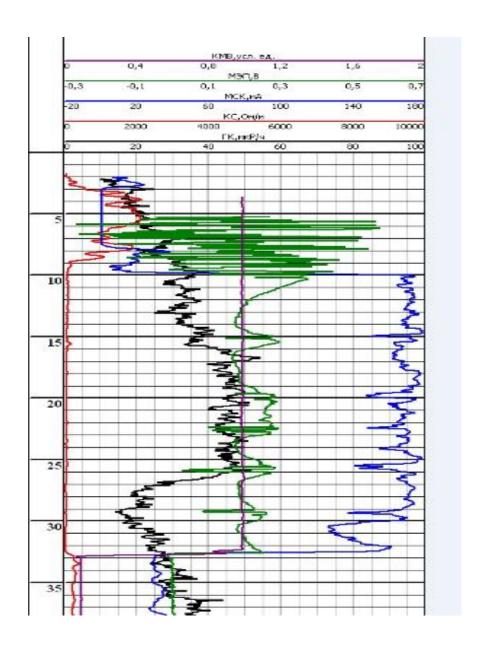


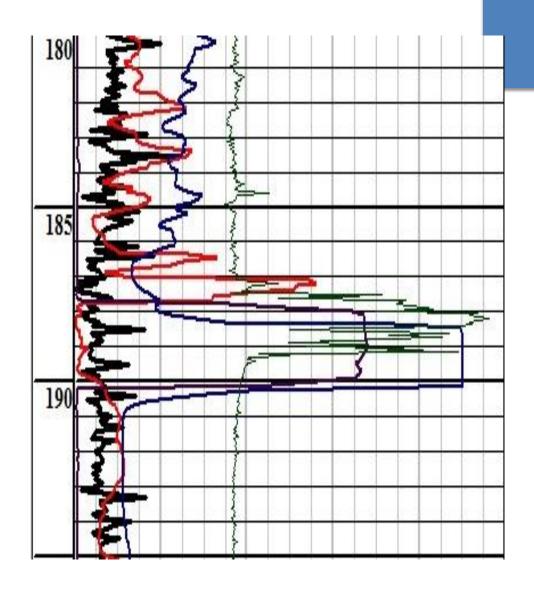

Сланцы: 1 – карбонатно-хлоритовые, 2 – серицито-кварцевые, 3 – углисто-глинистые, 4 – кварциты, 5 – зона сульфидной минерализации, 6 – вкрапленность пирита и сфалерита

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых - Алюминиевые руды (бокситы):

- **▶- СНАК, СНГК для определения содержания алюминия**;
- ГГК-С для определения суммарного содержания алюминия, железа, кремния;
- ННК для оценки пористости;
- ЭМК, КМВ, ИК, КМП, АК для выявления и прослеживания рудных горизонтов, расчленения руд на литологические типы (глинистые, рыхлые, каменистые и т.п.), изучения зон околорудного изменения, определения элементов залегания и морфологии рудных тел, выявления слепых рудных тел в околоскважинном и призабойном пространстве.

Комплекс ГИС в бокситоносном интервале скважины.



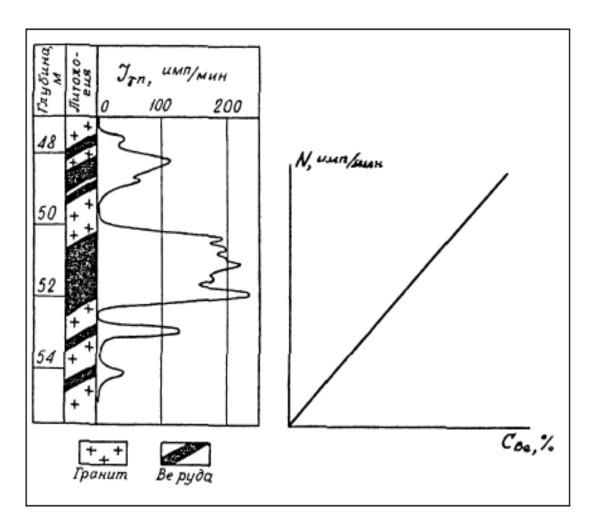


Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых

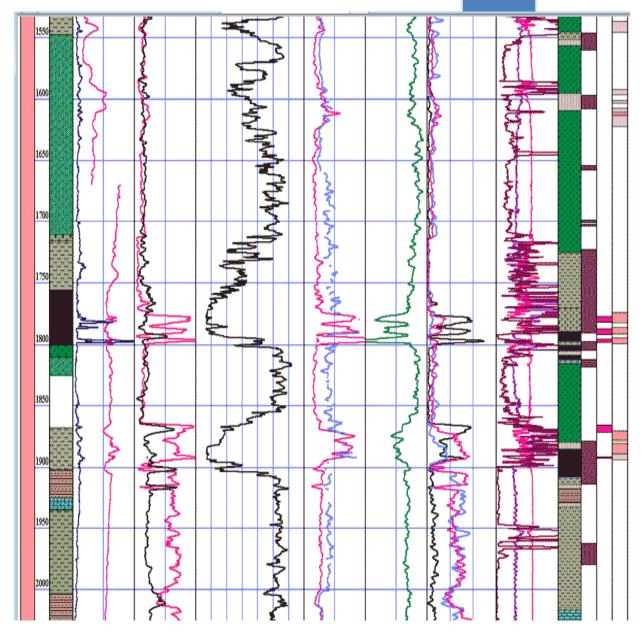
- Руды вольфрама, молибдена, сурьмы, олова, бария, серебра, золота, тантала, ниобия, циркония, стронция, цезия, рубидия:
- ▶- РРК или РРО керна для определения содержаний вольфрама, молибдена, олова, сурьмы, бария, серебра, тантала, циркония, стронция, рубидия, цезия, а также элементов-спутников (сульфиды меди, цинка, свинца, железа, мышьяка и др.);
- ГГК-С для определения суммарного содержания тяжелых элементов в рудах;
- ННК для определения в рудах серебра, цезия, тантала, молибдена и редкоземельных элементов;
- ГГК-П для определения плотности пород и руд;
- КС, МСК, МЭП, ЭМК для исследования рудовмещающих пород и околорудных изменений, выделения зон сульфидной минерализации.

Геофизическая характеристика сульфидных руд.

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых


- Ртутные руды:

- **▶- СНГК для определения содержаний ртути в рудах**;
- РРК для определения содержания сопутствующих элементов (сурьма, барий) и как индикаторный метод на ртуть;
- ГГК-С для определения суммарного содержания тяжелых элементов и выделения рудных зон с комплексным оруденением;
- ННК для выделения рудных зон с сурьмяно-ртутным комплексным оруденением;
- ГГК-П для определения плотности пород и руд.

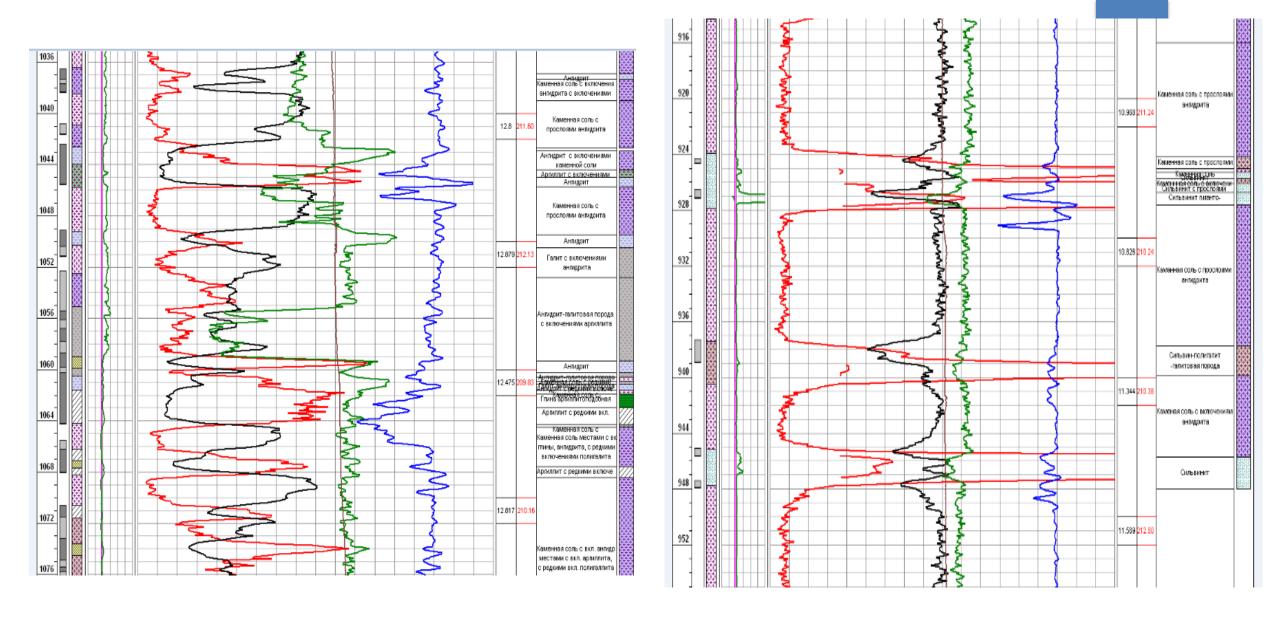

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых - Руды редкоземельных элементов:

- ▶- ННК в модификациях тепловых, надтепловых и резонансных нейтронов или их соотношения в зависимости от условий применения для определения содержания редкоземельных элементов в рудах;
- ГГК-С, РРК для определения суммарного или раздельного содержания сопутствующих элементов (циркония, титана, цезия, стронция, сульфидов и др.);
- ГГК-П для определения плотности пород и руд.

- **▶- ГНК для определения содержания бериллия в рудах**;
- ННК для учета мешающих факторов (влажности, пористости, содержания нейтронопоглощающих элементов: бора, редких земель, флюорита и др.);
- ГГК-П для определения плотности пород и руд;
- РРК для определения элементов-спутников (сульфидов меди, цинка, свинца, железа, мышьяка, барита и др.).

К оценке качества бериллиевой руды

Геофизическая характеристика угля и калийных солей по комплексу ГИС


- ▶- ННК в модификациях тепловых и надтепловых нейтронов для определения содержания лития и других сопутствующих элементов в рудах;
- ГНК для определения местоположения в разрезе скважин рудовмещающих бериллсодержащих пегматитов;
- ГГК-П для определения плотности пород и руд;
- РРК для определения концентрации элементов-спутников.

Борсодержащие руды:

- ННК в модификациях тепловых и надтепловых нейтронов, СНГК для определения содержания бора в рудах;
- ГГК-П для определения плотности пород и руд.

- CHAК для определения содержания фтора в рудах;
- ГГК-П для определения плотности горных пород и руд.

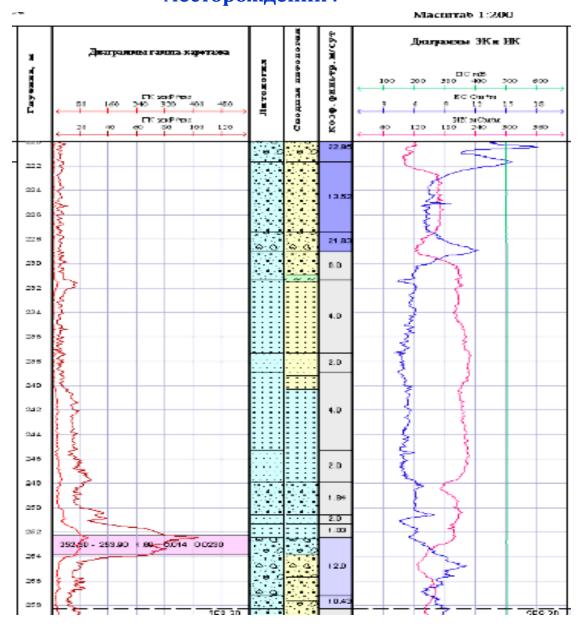
Комплекс геофизических исследований в бороносной скв.

Геофизическая характеристика калийных солей и бороносных пород.

- ▶- НАК (на фтор по изотопу N), СГК (на уран, торий) для выявления в разрезах скважин фосфатных руд и определения в них содержания фосфора (PO) по его корреляции с элементами-индикаторами (фтор, уран, торий);
- НАК (на быстрых нейтронах по изотопу Al) для расчленения руд на карбонатные разности;
- ННК по тепловым нейтронам для определения содержаний редкоземельных элементов; ННК по надтепловым нейтронам для определения трещиноватости и влажности руд; СНГК для определения содержаний железа;
- ГГК-П, ГГК-С для определения плотности пород и руд, уточнения границ и мощностей прослоев и литологии разреза скважин;
- РРК для оценки концентраций сопутствующих элементов.

Магнезиальные руды (магнезит, брусит): :

- ▶- ГК, КС, ПС для уточнения литологического разреза скважин;
- ГГК-П для определения плотности горных пород;
- ГГК-С, СНГК, ННК по тепловым и надтепловым нейтронам для определения влажности пород и содержаний окиси магния (MgO), окиси кальция (CaO) и алюмосиликатов (Al O+SiO) по корреляционным связям их с плотностью, эффективным атомным номером пород и их нейтронными свойствами.


Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых Кимберлитовые руды (алмазы):

- ▶- КС, ПС, СГК, КМВ для литологического расчленения геологического разреза и выделения кимберлитовых тел, обладающих гамма-радиоактивностью или намагниченностью, разделения кимберлитов по типам;
- КМП, ПС, КВП, ГГК-С для выделения в разрезах скважин зон сульфидной, магнетитовой и графитовой минерализации, а также для выявления кимберлитовых тел в околоскважинном пространстве и расшифровки наземных магнитных аномалий (КМП);
- термометрия и радиоволновое просвечивание для обнаружения кимберлитовых тел, не подсеченных скважиной;
- АК для изучения физико-механических свойств пород;
- ГГК-П для определения плотности пород;
- МАП для геометризации рудных тел и изучения изменений выработочного пространства при скважинной гидродобыче.

Типовые комплексы геофизических исследований скважин для изучения месторождений полезных ископаемых Радиоактивные руды (уран, торий):

- основными методами выделения и оценки качества радиоактивных руд на содержаниях урана и тория являются гамма-каротаж (ГК) и его спектрометрическая модификация (СГК)
 - для решения других геологических и технических задач в комплекс каротажных методов включаются методы ГГК-П, АК, КС, ПС, КМВ, РРК, ННК и др.;
- **На этапе доразведки и эксплуатационной разведке при изучении месторождений гидрогенного типа:**
- -гамма-каротаж; электрокаротаж (КС, ПС); инклинометрия; каротаж методом мгновенных нейтронов деления (КНД-М); кавернометрия; нейтрон-нейтронный каротаж(ННК).
- **На этапе эксплуатации участка геофизическими методами решаются технологические и технические задачи.** Систематически контролируется техническое состояние скважин, определяется распространение технологических растворов по площади участка и их проникновение за границы водоупоров, отслеживается ход процесса выщелачивания.
- На этапе эксплуатации участка в комплекс геофизических исследований скважин входят: токовый каротаж; индукционный каротаж; гамма-каротаж; каротаж методом мгновенных нейтронов деления; термометрия; расходометрия.

Комплекс геофизических исследований в интервале скважины на урановом месторождении.

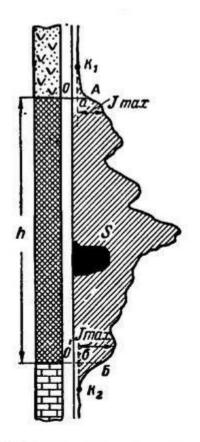


Рис. 99. Определение мощности и содержания урана в пачке пластов по краевым максимумам (по Л. Ч. Пухальскому, 1957)

А, Б — точки на внешних крыльях краевых максимумов, в которых J=1/2 J_{max} ; S — площадь аномалии; J_{max} , J'_{max} — интенсивность радиации в краевых максимумах аномалии; h — мощность пачки; пунктир—уровень нормального фона во вмещающих породах

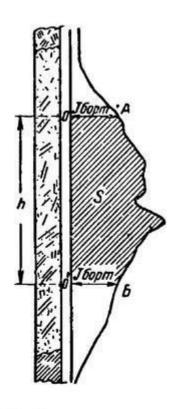
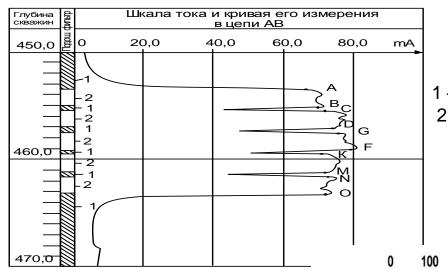



Рис. 100. Определение мощности и содержания урана в пачке пластов по бортовому содержанию (по Л. Ч. Пухальскому, 1957) А, Б — точки на крыльях аномалии, определяющие мощность пачки с промышленным содержанием урана; J_{60pm} — интенсивность гамма-радиации, соответствующая бортовому содержанию урана; S — площадь аномалии; h — мощность пачки

Схемы измерений в методе токового каротажа

Диаграмма токового каротажа

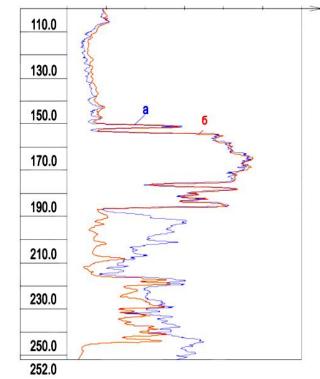
1 – участки «глухой » колонны; 2 – участки фильтров.

500

а – шунтовая схема; б – мостиковая схема;

Г – каротажный регистратор;

R_{III} – шунтовое сопротивление;


 ${
m R}_{{}_{
m 0}}$ – реостат для регулирования силы тока;

ИТ - источник тока.

Результаты индукционного каротажа, выполненного скважинным снарядом ПИК-50 перед закислением (а) и после закисления (б). Месторождение Канжуган. Залежь бу. Скв.103-25-5 (закачная).

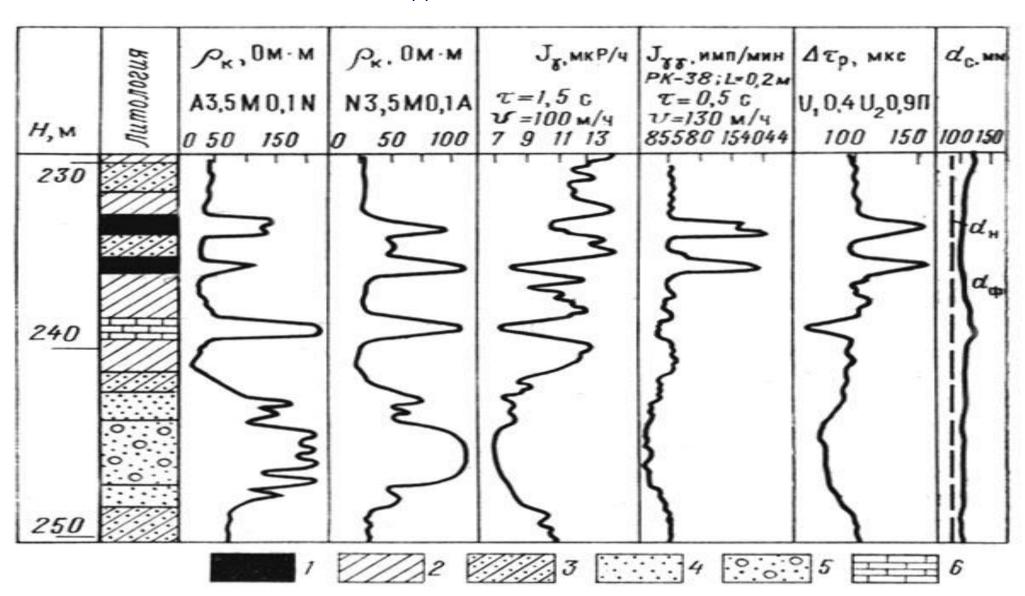
Интервал глубин 254-260м - установка фильтров (б);

в интервале 185-252м – отмечается переток продуктивных растворов в процессе ПВ.

- Минеральные соли (галит, сильвин, карналлит и др.):
 - СГК для определения содержаний калия;
 - СНАК на быстрых нейтронах для разделения солей на хлоридные, сульфатные и содовые разности;
 - ГГК-П и ГГК-С для дифференциации геологического разреза по плотности и эффективному атомному номеру пород;
 - ННК для определения влажности пород;
 - МАП для тех же целей,

- Пьезооптическое сырье (кварц, горный хрусталь):
 - радиоволновое просвечивание и пьезоэлектрический метод для выявления хрусталеносных пегматитов;
 - КС, ГК и инклинометрия для уточнения результатов пьезометода и литологического расчленения пород;
 - ГГК-П для определения плотности пород;
 - ГГК-С для выделения кварцевых жил.

Самородная сера:


- СНГК для выделения серосодержащих кварцитов, сульфатно-карбонатных пород и алунитов и оценки содержания в них серы;
- ГК, ГГК-П, ГГК-С для определения плотности, калия и железа в породах, содержащих серу.

- Горнотехническое сырье (асбест, графит, слюды, цеолиты, тальк и др.):
 - для выделения асбеста применяют КС, КМВ, ГК;
 - для выделения графита применяют КС, ПС, МЭП, МСК, КВП, ГК;
 - на месторождениях слюды (мусковит, вермикулит, флогопит) применяют СГК, АК, ГГК-П и радиоволновое просвечивание для выявления слюдоносных тел и расчленения геологического разреза;
 - на месторождениях цеолитов и талька применяют стандартные комплексы каротажа (КС, ПС, ГК, ГГК-П, КВП) для геологического расчленения разрезов скважин

Поисковый комплекс, масштаб 1:200 нли 1:500 Исследования по всему етволу скважин (классы I-IV) Стадни метаморфизма угля: I-XX (Б1-Б3; Д1-Т2; А1-А2)		Детализационный комплекс, масштаб 1 : 50 или 1 : 20								
		Исспедование кровли и почвы угольных пластов (классы I-IV) Стадии метаморфизма угля: I-XX (Б ₁ -Б ₃ , Д ₁ -Т ₂ , А ₁ -А ₆)		Исследование угольных пластов						
				Стадии метаморфизма угля: I—III, XII, XIII (Б ₁ —Б ₃ , Т ₂ , ПА ₁)(клас- сы I, III)		Стадии метаморфизма угля: IV-XI (БД, Д ₁ - OC, Т ₁) (класс II)		Стадии метаморфизма угля: XIV-XX (ПА ₂ , A ₁ -A ₆) (класс IV)		
Основной	Дополни- тельный	Основной	Дополни- тельный	Основной	Дополик- тельный	Основной	Дополни- тельный	Основной	Дополни- тельный	
КС _{ГЗ} КС _{ПЗ} ГК ГГК-П Кав АК* Нак* Инк*	ВП ПС ГЗК Терм Рез	КС _{ГЭ} КС _{ПЗ} БТК (i _ф) ГК ГГК-П АК Кав Нак*	вп пс	КС _{ПЗ} БТК (<i>i</i> _ф) ГК ГГК-П ГГК-С Кав ООП*	ВП НГК АК Нак	КС _{тз} КС _{пз} БТК (<i>i</i> _ф) ГК ГГК-П ГГК-С Кав ООП*	ВП БМК АК Нак	КС _{пз} ПС (Гр.ПС) ГК ГГК-П ГГК-С Кав ООП*	ТК ЭП АК Нак	

^{*}Метод применяется выборочно в отдельных скважинах, а отбор образцов пород (ООП) производится из отдельных угольных пластов. Методы $\mathrm{KC}_{\mathrm{T3}},\,\mathrm{KC}_{\mathrm{H3}},\,\mathrm{ETK}\,(i_{\mathrm{\Phi}})$, FK могут быть заменены методами $\mathrm{KC}_{\mathrm{EK}},\,\sigma_{\mathrm{EK}},\,\Gamma\mathrm{K}\,$ (с прибором EKP -3) .

Литологическое расчленение разреза скважины по геофизическим методам поискового комплекса.

1 - уголь;

2 – аргиллит;

3 - алевролит;

4 - песчаник;

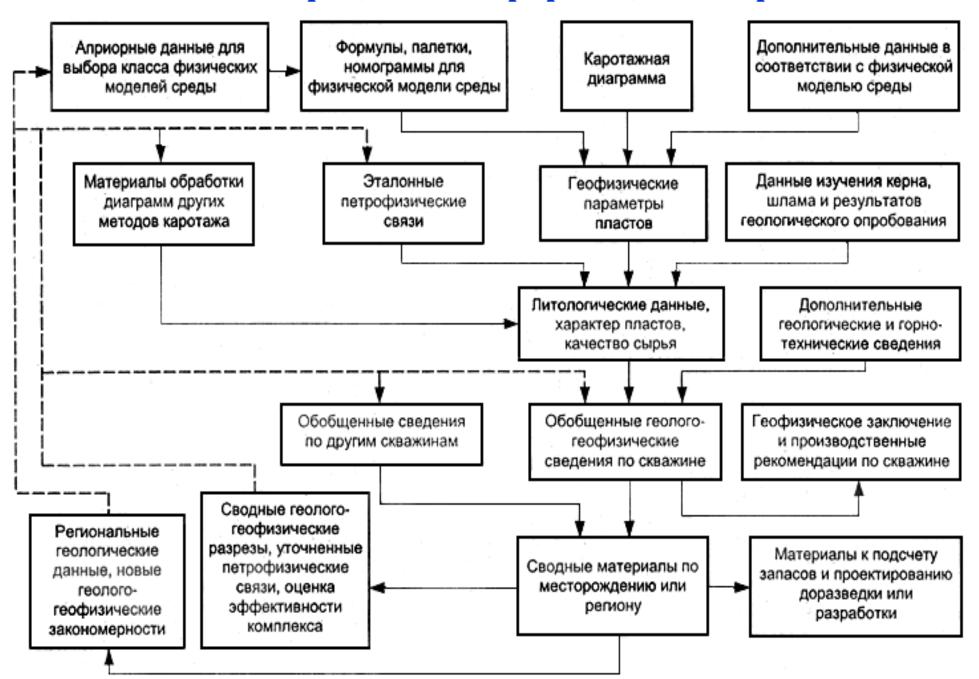
5 - конгломерат;

6 - известняк

Дополнительные методы геофизических исследований скважин для изучения месторождений полезных ископаемых

- ► Во всех скважинах, бурящихся на руду, каротажные комплексы дополняют методами изучения инженернотехнического состояния скважин:
 - -кавернометрией или микрокавернометрией при использовании РРК;
 - -инклинометрией при глубине вертикальных скважин свыше 200 м или в наклонных и горизонтальных скважинах;
 - -термометрией, если необходимо выделить зону многолетней мерзлоты и зону ее оттаивания;
 - -резистивиметрией, если требуется определить уровень и место притока пресных или соленых подземных вод.
- В зависимости от минерального состава руд, полезных и вредных примесей, сопутствующих основным рудным компонентам, а также от условий применения и геологических задач указанные комплексы могут дополняться другими видами каротажа.
- Если указанные выше типовые комплексы избыточны для конкретных условий и задач, то на их основе могут быть составлены сокращенные рациональные каротажные комплексы, включающие минимальное количество методов каротажа, но обеспечивающие достаточно полное решение поставленных геологических задач на той или иной стадии проведения геологоразведочных работ.

Характеристика условий применения скважинных геофизических методов


Методы	Факторы, благоприятные для успешного применения методов	Факторы, осложняющие применение методов	Примечания
Естественного электрического поля(ЕП)	Электрохимические свойства и низкое удельное электрическое сопротивление руд, массивные и прожилковые текстуры руд, силикатные вмещающие породы	Наличие графитизированных и углистых пород в разрезе, вкрапленная текстура руд, карбонатная вмещающая среда, интенсивные промышленные и теллурические помехи	Метод наиболее эффективен на крутопадающих лентовидных и пластообразующих месторождениях, выходящих верхней частью в зону просачивания грунтовых вод
Вызваннойполяризации (ВП)	Высокая поляризуемость руд и слабая поляризуемость вмещающей среды	Наличие углистых, графитизированных, пиритизированных пород или пород с вкрапленным магнетитовым оруденением.	Большая мощность наносов препятствует применению метода в модификациях «скважина - поверхность»
Радиоволнового просвечивания	Электрическое сопротивление руд на 1-2 порядка ниже сопротивления вмещающей среды. Четкие контакты руд с вмещающей средой, выпуклые формы рудных тел.	Наличие хорошо проводящих объектов в разрезе. Низкое удельное сопротивление (до 100 Ом·м) вмещающей среды. Сухие скважины, редкие скважины.	Метод особенно важен для изучения положения и сплошности полого лежащих тел, где применимость метода скважинной электроразведки постоянным током ограничена
Скважинной электроразведки постоянным током (варианты заряда, корреляции и др.)	Электрическое сопротивление руд на 2-3 порядка ниже сопротивления вмещающей среды. Форма рудных тел лентовидная, линзообразная, пластообразная. Текстуры руд массивные и прожилковые, состав преимущественно колчеданный	Существенно сфалеритовый состав руд, вкрапленная текстура руд, многочисленные разрывы сплошности рудных тел. Наличие хорошо проводящих пород в разрезе (углистых пород, зон трещиноватости, обводнения и т.п.)	Варианты метода в модификации «скважина - поверхность» наиболее эффективны для крутопадающих, не глубоко залегающих рудных тел. Наносы выдержанной мощности не препятствуют проведению работ при достаточной глубине погружения источника тока
Скважинной индукционной многочастотной электроразведки (варианты ДЭМПС и ННП)	Очень низкое сопротивление руд. Массивная текстура руд, четкие контакты руд с вмещающей средой	Вкрапленная и прожилково-вкрапленная текстура руд, наличие хорошо проводящих графитизированных пород	

Характеристика скважинных геофизических методов исследования рудных скважин.

исследования рудных скважин.						
Метод	Назначение	Условия применения	Дальность действия от ствола скважины,м			
Естественного электрического поля	Нахождение сульфидных (массивных и вкрапленных) руд в околоскважинном и призабойном пространстве. Определение протяженности оруденения на глубину	В одиночных скважинах и группах скважин, в том числе (при большой мощности рыхлых отложений) в картировочных (любой диаметр)	200-400			
Вызванной поляризации	Выявление сульфидных (в том числе вкрапленных) руд в околоскважинном (и межскважинном) пространстве. Определение размеров оруденения по простиранию и падению	В одиночных скважинах и группах скважин глубиной до 1000м (любой диаметр скважины)	50-100, иногда до 200			
Радиоволнового просвечивания	Выявление сульфидных руд в межскважинном пространстве, определение размеров, морфологии и мест выклинивания рудных тел, их сплошности между скважинами. Увязка рудных пересечений	В парах скважин	От 50 до 300-400			
Скважинной электроразведки постоянным током(варианты заряда,корреляции и др.)	Обнаружение сульфидных (сплошных и прожилково-вкрапленных) руд в околоскважинном, призабойном и межскважинном пространстве. Определение элементов залегания, размеров, формы рудных тел, их сплошности. Корреляция рудных подсечений	В одиночных скважинах (в том числе при большой мощности рыхлых отложений), в группах скважин глубиной до 1000-	До 300			
Скважинной индукционной электроразведки (варианты ДЭМПС и ННП)	Установление сплошных сульфидных руд в околоскважинном пространстве. Определение размеров и элементов залегания рудных залежей, выявление массивных руд среди зон вкрапленников	В одиночных скважинах глубиной до (в варианте ДЭМПС диаметр от и более)	60-80			

и ННП)

Схема процесса интерпретации материалов

Контрольные вопросы

- 1. Задачи и особенности выбора комплекса ГИС на рудных месторождениях
- 2. Комплекс геофизических методов исследования скважин. Электрические методы. Назначение и решаемые задачи
- 3. Комплекс геофизических методов исследования рудных скважин. Электромагнитные методы. Назначение и решаемые задачи
- 4. Комплекс геофизических методов исследования рудных скважин. Ядерногеофизические методы. Назначение и решаемые задачи
- 5. Комплекс геофизических методов исследования рудных скважин. Дополнительные методы. Назначение и решаемые задачи
- 6. Комплекс ГИС и решаемые задачи на стадии поисковых работ
- 7. Комплекс ГИС и решаемые задачи на стадии оценки рудных месторождения
- 8. Комплекс ГИС и решаемые задачи на стадии разведки рудных месторождений
- 9. Комплекс ГИС и решаемые задачи на стадии эксплуатации рудных месторождений
- 10.Факторы влияющие на ррезультативность и эффективность ГИС на рудных месторождениях