Министерство образования и науки Республики Казахстан

Институт геологии, горного и нефтегазового дела Кафедра: Геофизика

Комплексировании методов поисков и разведки месторождений твердых полезных ископаемых для специальности 7м07105 «нефтегазовая и рудная геофизика»

Истекова С.А., докт. геол.-минерал. наук

АЛМАТЫ 2022

Лекция 12

Геофизические методы поисков и разведки месторождений полезных ископаемых Рудная геофизика

ОСОБЕННОСТИ МЕТОДИКИ ПОИСКОВ И РАЗВЕДКИ ВЕДУЩИХ ГЕОЛОГО- ПРОМЫШЛЕННЫХ ТИПОВ МЕСТОРОЖДЕНИЙ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

7. Геофизические методы

- При минерагенических и прогнозных исследованиях широко используются геофизические методы, которые подразделяются на опережающие и сопровождающие.
- В группу опережающих методов относятся
 аэрогеофизические (аэромагнитная,
 аэрогаммаспектрометрическая) съемки масштабов 1:50000 –
 1:25000, гравиметрическая высокочастотная, магнитная
 съемки, электроразведка тех же масштабов, сейсмические
 работы в профильном или площадном вариантах; гамматепловая съемка.
- На отдельных площадях выполняются выборочно наземные электроразведочные работы: картировочные вертикальное электрическое зондирование (ВЭЗ), ДЭП, СЭП и поисковые естественного электрического поля (ЕП), вызванной поляризаци (ВП), МПП, на закрытых территориях – крупномасштабная (1:50000, 1:25000) гравиразведка, профильная сейсморазведка или площадная сейсморазведка.

- Региональные исследования масштабов 1:500000,
 1:200000 включают спутниковую геофизику –
 магнитные, гравитационные и электромагнитные съемки.
- Среднемасштабные аэрогеофизические съемки магнито-, электро-, гамма-, тепловые, а также наземные гравиметрические, структурно- электроразведочные ВЭЗ, ДЭЗ, ЗСП, региональную сейсморазведку КМПВ, МОВ, каротажные работы.
- Опережающие геофизические работы включают крупномасштабные аэрогеофизические съемки: магнито-, электро-, гамма-, тепловые и наземные выборочно-картировочные ВЭЗ, ДЭП, СЭП.

- С целью изучения глубинного строения территорий используются методы "глубинной" геофизики: ГСЗ, ВЭЗ-МОВ в профильном или в площадном вариантах, а также методы сейсмической томографии.
- Все эти методы значительно увеличивают глубинность прогнозирования.
- Для прогнозно-минерагенической оценки рудных зон, рудных районов, рудных узлов используются геофизические наземные и дистанционные съемки масштаба 1:200000.
- Рудные поля, месторождения исследуют путем проведения геофизических работ масштабов 1:50000, 1:25000, а рудные тела – путем детальных геофизических исследований масштабов 1:10000...1:2000.

Рис. 5. Выделение региональной рудоконтролирующей структуры геофизическими методами: а — карта локальных аномалий силы тяжести вариаций R = 5 км), б — схема геологического строения с элементами металлогении в восточной части Восточно-Уральского поднятия

(по А.М. Виноградову и др.)

1 – осадочные породы, 2 – туфы и лавы преимущественно кислого состава, 3 – дацитовые порфиры, 4 – туфы и туффиты смешанного состава, 5 – дацитовые порфиры, 6 – граниты, 7 – гранодиориты, 8 – габбро, 9 – горизонтальная проекция контура гранитоидного интрузива на глубине, 10 – разрывы, 11 – зона рудоконтролирующего разлома, 12 – месторождение меди, 13 – изоаномалы гравитационного поля

При прогнозировании материалы геофизических работ используют для решения следующих задач:

- 1) выделения рудоконтролирующих особенностей рудных объектов в геофизических полях;
- выявления и оценки локальных аномалий, связанных непосредственно с рудными полями, месторождениями, телами;
- определения рудоконтролирующих элементов геологического строения площадей;
- 4) изучения глубинного строения территорий [Прогнознометаллогенические...,1985].
- Результаты геофизических исследований отображаются на следующей графике: структурно-геологических схемах геологической интерпретации геофизических данных, схемах глубинного строения территорий, картах закономерностей размещения полезных ископаемых

Поисковые исследования

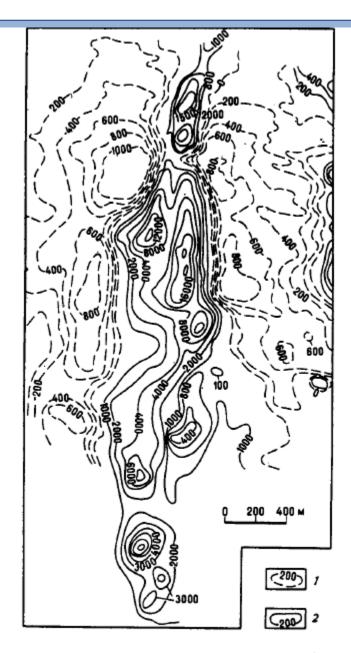
Железорудные месторождения

- Промышленные типы месторождений
- 1) месторождения железистых кварцитов докембрийских же-лезисто-кремнистых формаций (52,9 % балансовых промышленных запасов и 63,3 % добычи);
- 2) месторождения богатых железных руд, связанных с корой выветривания железистых кварцитов железисто-кремнистых фор-маций (10,9 % запасов и 7,3 % добычи);
- 3) месторождения магнетитовых руд скарново-магнетитовой формации в осадочных и вулканогенно-осадочных породах (15 % запасов и 14,8 % добычи);
- 4) месторождения титаномагнетитовых и апатит-магнетито-вых руд в ультраосновных и основных породах (8,1 % запасов и 11,3 % добычи);
- 5) месторождения сидеритов и бурых железняков как осадоч-ных, так и связанных с корами выветривания сидеритов и ультра-основных пород (6,8 % запасов и 3,3 % добычи).

Железорудные месторождения

□Поисковые работы всегда ориентированы на определенные геолого-
промышленные типы месторождений.
□Прогнозная оценка и поиски базируются на анализе прогнозно-
металлогенических карт железорудных районов различного масштаба (1:200000-1:50000).
□Магнетитовый состав и в большинстве случаев высокая плот-ность железных
руд способствуют эффективному использованию магнитометрической и
гравиметрической съемок при поисках и оценке месторождений.
□ Использование геофизических методов при поисках и разведке месторождений
железных руд обусловлено контрастностью большинства их физических свойств
относительно вмещающих пород, приводящей к возникновению в местах
локализации железооруденения характерных аномалий различных физических
полей.
□ Количественная интерпретация геофизических данных позволяет уточнить
мощность выходов рудных залежей под рыхлыми отложениями

Железорудные месторождения


Рудоконтролирующие факторы, критерии и поисковые признаки некоторых ведущих типов железорудных месторождений

Геофизические:	Железистые кварциты г		Скарново-
а) локальные признаки магнитных и гравиметровых аномалий. Интенсивность: $\Delta T \ (\Delta Z)$, тыс. нТл Δg , мГл площадь, км ² форма	30-170	10-80	3-50 и более
	3,5-9	4-9	0,5-4 и более
	2,5-15	3,5-5	0,4-8
	Линейная, редко	От лентовидной,	Изменчивая
	изометрическая	эллипсовидно-	(от простой

Железорудные месторождения

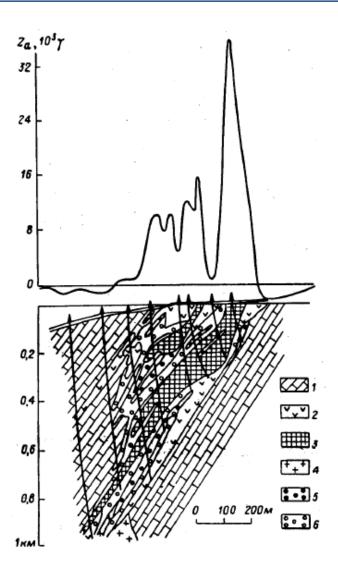
Рудоконтролирующие факторы, критерии и поисковые признаки некоторых ведущих типов железорудных месторождений

Ведущие рудоконтро-	Железистые кварциты		Скарново-	
лирующие факторы, признаки	лебединский тип	белгородский тип (богатые руды кор выветривания)	магнетитовые руды (тагильский тип)	
		вытянутой до изометричной	субизометричной до замысловато- усложненной)	
б) картина грави- магнитных полей над рудными поля- ми месторождений	Мощные по размерам и интенсивности; протяженные линейные зоны аномалий на фоне слабовозмущенных региональных составляющих	Аналогичны по- лям лебединско- го типа, но с по- ниженным в 2-3 раза уровнем ин- тенсивности по- лей	Сложные по морфоструктуре аномальные поля; отличаются высокой степенью дифференциации по форме и амплитуде за счет развитых здесь метасоматитов и рудных зон	

. Сарбайское месторождение

Железорудный район Тургая фиксируется аномалиями высокой интенсивности.

Протяженная аномалия с четырьмя эпицентрами.


Интенсивность аномалии с юга на север увеличивается от 7 до 23 тыс. нТл.

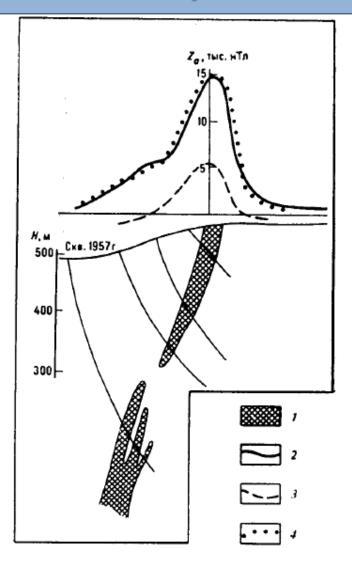
Гравитационное поле Главной железорудной полосы по структуре несколько проще магнитного.

Все известные магнетитовые и магнетит-мартитовые месторождения сопровождаются в гравитационном поле локальными максимумами силы тяжести.

 $^{\prime}$ ис. 1. Магнитный план Сарбайского месторождения (по Н. Г. Шмидту): l — отрицательные значения магнитного поля, нТл; 2 — то же, положительные

Тейское железорудное месторождение

магнитная аномалия интенсивностью в десятки тысяч гамм
• Рудные тела различной формы


Рудному полю соответствует

 Рудные тела различной формы (пластообразной, линзовидной) часто объединяются, вызывая общую контрастную магнитную аномалию на фоне спокойного поля, соответствующего осадочным и изверженным породам -

Рис 2. Геологический разрез Тейского железорудного месторожден (по Б. Д. Микову):

1 — известняки; 2 — трахиты; 3 — магнетитовая руда; 4 — плагиограниты; 5 — скарны рудные; 6 — скарны безрудные

• Месторождение Одиночное (Восточный Саян)

Интерпретация сложных по строению магнитных полей от нескольких залежей может быть использована для выявления глубокозалегающих рудных тел.

В этом случае рассчитывается теоретическое поле для его сравнения с фактическим наблюдением.

В случае значительного расхождения интерпретация разностного поля может помочь выявлению невскрытых залежей

Рис. 3. Результаты интерпретации данных магнитной съемки на месторождении Одиночное (Восточный Саян) (по Б. И. Терехову):

¹ — руда; 2 — наблюденная кривая Z_a ; 3 — теоретическая кривая Z_a от рудного тела;

⁴ — теоретическая кривая \mathbf{Z}_a , полученная подбором (с учетом рудного тела на глубине)

Геофизические исследования скважин (ГИС)

- В основной комплекс ГИС входят методы:
- скважинной магнитораз-ведки (CM, ∆Z, TCM) и
- различные виды каротажа:

```
гамма-каротаж (ГК),
каротаж сопротивлений (КС),
каротаж поляризации (КП),
гамма-гамма-каротаж плотности (ГГК-П),
селективный гамма-гамма-каротаж (ГГК-С),
каротаж магнитной восприимчивости (КМВ),
электромагнитный каротаж (ЭМК),
спектрометрический нейтронный гамма-каротаж (СНГК) и др.
```

Геофизические исследования скважин (ГИС)

- При отсутствии на ранних стадиях изучения прямых данных опробования качество прогнозируемых железных руд определяется либо по аналогии, либо рассчитывается по **геофизическим материалам.**
- В основе прогнозирования качества руд по геофизическим данным лежат корреляционные зависимости:
- между магнитной восприимчивостью руд и содержанием в них железа магнетитового (коэффициент корреляции 0,30-0,80),
- между плотностями железных руд и содержанием в них железа общего (коэффициент корреляции 0,83-0,95).

Поэтому

- на объектах магнетитовых руд используют в основном магнитные и электромагнитные методы геофизического опробования (КВМ, ЭМК);
- на объектах смешанного или немагнитного состава ядерно-физические методы, нацеленные на определение плотности пород и содержания железа общего (ГГК-П, ГГК-С, СНГК, рентгенорадиометрический метод).

- Основу минерально-сырьевой базы меди составляют следую-щие промышленные типы месторождений:
- медно-порфировый в структурах базальтоидных островных дуг; нередко месторождения этого типа характеризуются повышен-ной золотоносностью;
- молибден-медно-порфировый в андезитоидных вулканоплу-тонических поясах;
- медноколчеданный в базальтоидных формациях структур типа окраинноконтинентальных рифтовых зон;
- медно-цинково-колчеданный в риолит-базальтовых форма-циях островных дуг;
- медистых песчаников и сланцев в красноцветных осадочных формациях орогенных и платформенных депрессионных структур;
- сульфидные медно-никелевые месторождения связанные с формациями мафитультрамафитового ряда и в поясах развития трапповой вулканоплутонической ассоциации

Поисковые признаки оруденения медно-порфирового типа

• геофизические признаки:

- •отрицательные аэромагнитные аномалии (*∆T*) на фоне повышенных значений окружающего геомагнитного поля;
- -аномалии ВП, фиксирующие зоны максимального развития сульфидной минерализации.
- Магнитометрической съемкой могут быть выделены экзоконтактовые зоны интрузивных тел, сопровождающиеся ороговикованием и скарнированием пород интрузивной рамы, а также зоны развития магнетита во внутренних частях медно-порфировых систем.
- Собственно рудоносные части совпадают с зонами серицитизации, окварцевания и аргиллизации.
- Они могут фиксироваться рядом аномалий геофизических (вызванной поляризацией), геохимических (меди, молибдена и др.)

Месторождения медно-порфирового типа

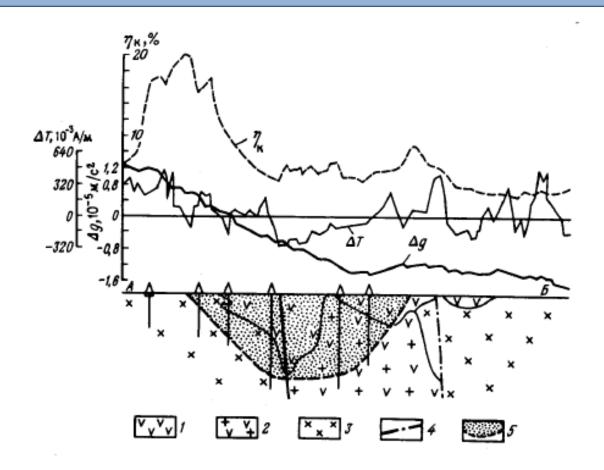


Рис. 5. Разрез через месторождение Хаймонт (Канада) (по М. Б. Бородаевской и др.):

I — лавы, туфы андезидацитового состава $(C_3 - P_1)$; 2 — малые интрузии гранодиорит-порфиров; 3 — кварцевые диориты и гранодиориты; 4 — разрывные нарушения; 5 — контур молибдено-медного оруденения

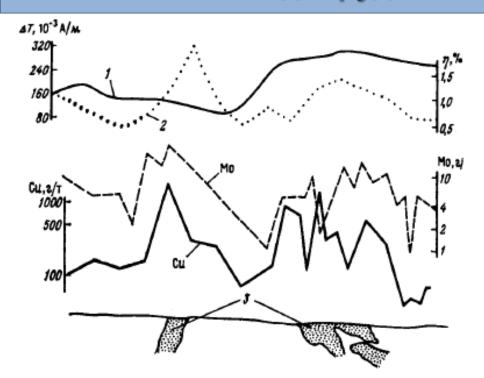


Рис. 6. Разрез месторождения Актогай (по В. П. Коняеву и др.): 1- данные аэромагнитометрии; 2- результаты метода вызванной поляризации (η); 3- рудные тела

При поисках меднорудной минерализации могут быть задействованы и другие методы (атмо-, гидрогеохимические, биогеохи-мические, термобарометрические и т. д.).

Однако практически всегда используется устоявшееся сочетание методов: вызванной поляризации, наземной магнитометрии, литохимических методов по вторичным ореолам.

Эффективное применение комплекса геофизических методов описано на примере Актогайского месторождения в Казахстане. Месторождение расположено в позднекаменноугольно-раннепермском вулканоплутоническом поясе.

Рудовмещающий плутонический массив представлен кварцевыми диоритами, гранодиоритами, гранодиоритпорфирами.

Оруденение контролируется штокообразными телами гранодиорит-порфиров и развито в виде кольцевой зоны. В центральной части ме-сторождения находятся локально развитые эруптивные брекчии и кварцевые тела.

Детализация аномалии, выявленной ВП, поз- волила оценить распространение оруденения на глубину. При про ведении оценочных работ для определения наличия оруденения в межскважинном пространстве использовался метод ВП в модифи-кации трехэлектродного профилирования и вертикального профиля.

После проходки одиночных скважин с целью установления размеров минерализованных зон ставился метод глубинного заряда.

Месторождения медно-колчеданного типа

таолища э

Виды и методы работ, требуемые для выделения и оценки перспективных участков на оруденение медноколчеданного типа

Виды работ	Обстановки ведения работ		
	I	II	Ш
1. Объемное геологическое, фациально- формационное, литолого-фациальное и структурное картирование М 1:25000- 1:10000 с составлением специализированно- го комплекса карт и разрезов	++	++	++
2. Горно-буровые работы	++	++	++
3. Геофизические работы 3.1. Сейсморазведка (МОГТ, МОВ)	++	++	++
3.2. Гравиразведка	++	++	++
3.3. Электроразведка (ЕП, ВП, ВЭЗ-ВП, МПП, СГ-ВП, КП-ВП, ЗСБ)	++	++	++
3.4. Скважинные исследования (ЕП, ВП, КСПК, РВП, МЗТ, МПЗТ, МЭК-ПКВ)	++	++	++
Геохимические работы А.1. Литохимическая съемка по первичным ореолам	+	+	-
 4.2. Литохимическая съемка по вторичным ореолам 	++	+	-
5. Изучение вещественного состава руд	++	++	++
6. Локальное прогнозирование с составлени- ем прогнозных карт и оценкой прогнозных ресурсов категорий P_1 (P_2)	++	++	++

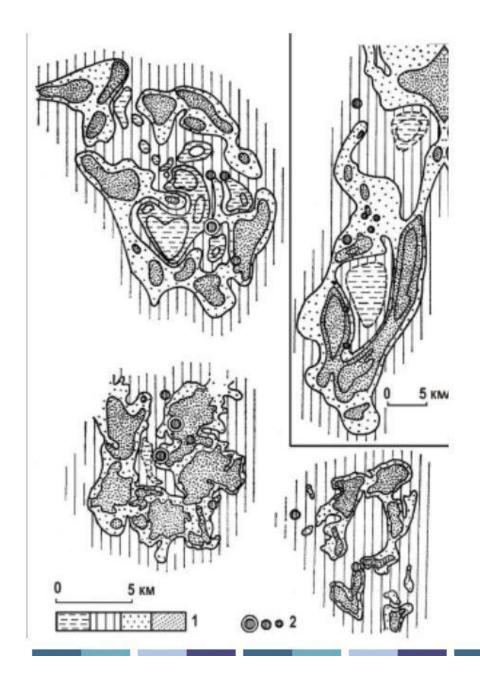
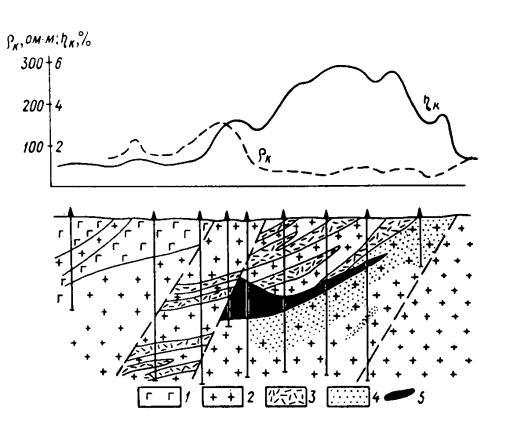



Схема отражения вулкано-тектонических структур, контролирующих медно-колчеданное оруденение в поле локальных гравитационных аномалий (по В.И. Бергеру и др.): 1 – интенсивность гравитационного поля; 2 – медно-колчеданные месторождения и рудопроявления

Месторождения медноколчеданного типа

Большое значение при крупномасштабном прогнозе и поисках имеет составление прогнозно-поискового комплекса (ППК), основанного на разработанных прогнозно-поисковых моделях (ППМ).

Показанные в комплексе характеристики должны быть достоверно опознаны современными методами геологоразведочных работ, включая геофизические методы. На примере одного из мед-ноколчеданных месторождений Южного Урала над рудной залежью отчетливо зафиксирована повышенная кажущаяся по-яризуемость (η^к до 6 %) при нормальном поле в 1 %.

Детализация аномалии, выявленной ВП, поз- волила оценить распространение оруденения на глубину.

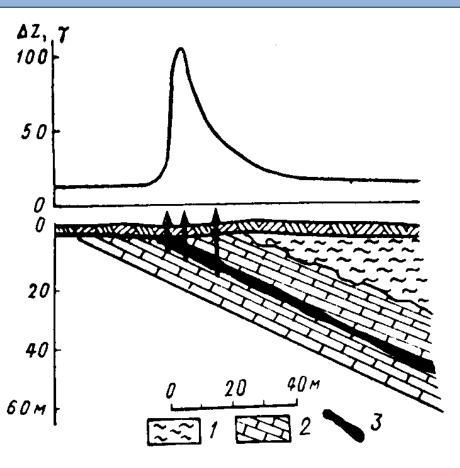
При про ведении оценочных работ для определения наличия оруденения в межскважинном пространстве использовался метод ВП в модифи-кации трехэлектродного профилирования и вертикального профиля.

После проходки одиночных скважин с целью установления размеров минерализованных зон ставился метод глубинного заряда.

Алюминиевое сырье

Перечень поисковых признаков, используемых при оценке бокситоносности территорий, весьма ограничен.

Их перечень выте-кает из анализа элементов геологического строения и поисковых критериев

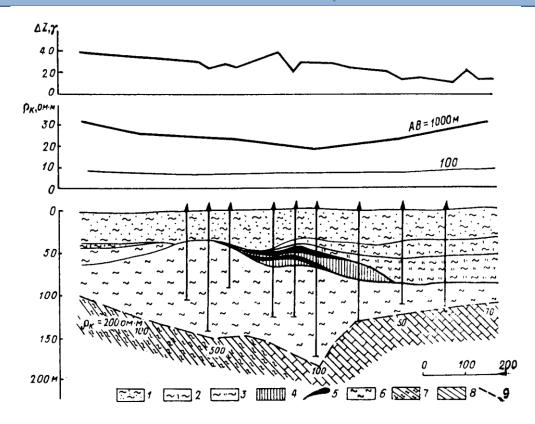

К их числу следует отнести:

- а) наличие благоприятных для локализации оруденения осадочных комплексов пород;
- б) широкое распространение алюмосиликатных пород, являющихся благоприятным субстратом для формирования латеритных кор выветривания в прошлые геологические эпохи;
- в) наличие крупнообломочных (гальки, валунов) ореолов бокситов в ложковых, делювиально-карстовых и аллювиальных отложениях;
- г) геофизические аномалии.

Алюминиевое сырье

- ▶Возможности геофизических методов определяются физическими свойствами пород и руд бокситоносных районов .
- ➤ Наиболее резко отличаются породы осадочного чехла и фундамента по плотности, электрическим свойствам, скорости распростра-нения упругих волн.
- ➤ Это позволяет картировать рельеф фундамента с высокой точностью, выделять в породах чехла различные литологические разновидности, намечать площади развития кор выветривания в породах субстрата.

Алюминиевое сырье

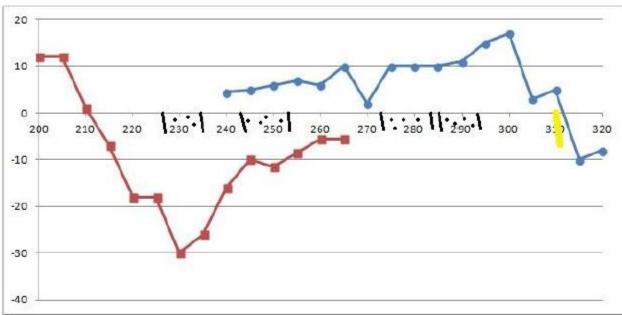


➤На объектах карстового, эрозионнокарстового типа в пределах депрессионных зон нередко отмечается повышенная магнитная восприимчивость отдельных разновидностей бокситов (в первую очередь, каменистых), иногда повышенное содержание тория.

- ≻На кривых симметричного профилирования отчетливо прослеживаются понижения в рельефе.
- ▶Отмеченное позволяет рассматривать пространственно сопряженные результаты
- -магниторазведки,
- -гамма-спектроскопии,
- -электроразведки,
- -высокоточной гравиразведки

в качестве прямых поисковых признаков,

Алюминиевое сырье


- ≻Над участком с каменистыми бокситами проявлена локальная аномалия с интенсивностью в первые сотни гамм. На кривой симметричного профилирования понижение в рельефе палеозойских пород проявлено лишь при разностях AB = 1000 м.
- ≻Положение контакта известняков определено по данным ВЭЗ.

- •Детализация геоэлектрического строения месторождения необходима для выделения уровней рудоотложения в модели эксгаляционно-осадочного происхождения руд.
- •Представлены результаты детализационных электроразведочных работ в рудной зоне Чусовского месторождения методами вызванной поляризации и электрической корреляции.
- •На участке месторождения были проведены детализационные работы методами вызванной поляризации, срединного градиента, электротомографии и электрической корреляции.
- •Установлены сопротивления подстилающих и перекрывающих блоков пород.
- •В рудовмещающей толще выделены зоны повышенного сопротивления в лежачем боку, связанные с преобладанием силикатной составляющей в руднометасоматических растворах, а также более электропроводные зоны, в включающие уровни рудоотложения

Чусовское медно-цинковое колчеданное месторождение

- Месторождение приурочено к вулканогенно-осадочным породам базальт-риолитовой формации восточного склона Красноуральско-Дегтярско-Карабашской гряды.
- Осадки палеосклона мощностью 500-800 м наклонены на восток под углом 60-80град и представлены чередованием прослоев базальтов, туфов дацитового состава, кварц-серицитовых и углеродисто-кремнистых сланцев, субвулканическими дайками риолитов, серпентинитов.
- Толща кварц-серицитовых сланцев сформировалась в пределах склоновой рудовмещающей депрессии по первичным кремнистым осадкам. Именно в сланцах и залегают линзовидные тела вкрапленных руд размером от 50 до 500 м

- Детальный метод электрической корреляции в поисково-картировочном варианте проведен двухполюсной установкой АМ=40 м.
- Питающая линия перемещалась с шагом 10 м из лежачего бока, через рудную зону в висячий бок.
- От каждого заряда снят график потенциала с шагом приемной линии 5 м.

Графики потенциала пересчитаны в градиент.

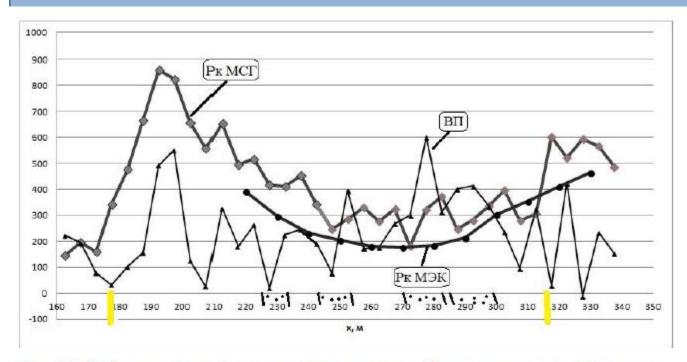

Высокими значениями градиента выделены контакты электропроводнов вмещающей толщи сланце с высокоомными окварцованными горными породами и породами надрудной толщи справа

Рис. 2. Графики градиента потенциала по методу электрической корреляции.

- Для расчета ВП измерялось кажущееся сопротивление на двух частотах: 4,88 и 19,5 Гц. Измерения проводились с разносами питающей линии АВ = 220 м, приемной линии MN = 5 м.
- Рассчитаны значения для установки АМ.
- В пределах всей сланцевой зоны значения составляют 200 Ом·м, они характеризуют продольную составляющую сопротивления.
- Породы лежачего и висячего боков характеризуются сопротивлением 400 Ом·м.
- График сопротивления характеризует на глубине 10-15 м.
- Значение вызванной поляризации рассчитывалось по формуле:

$$\eta_{K} = \frac{\rho_{f_{1}} - \rho_{f_{2}}}{\rho_{f_{1}}} * 100 \%,$$

Где ρ_{f_2} и ρ_{f_2} — сопротивления, рассчитанные на первой и второй частотах соответственно.

Значения кажущейся вызванной поляризуемости меняются в пределах 0,2 – 6 %.

Максимумы 4-6 % на расстояниях профиля исследований 265-280, 285-300 м соответствуют зонам рудной медно-цинковой вкрапленности.

Рис. 1. Графики ρ_{κ} и кажущейся поляризуемости. Указаны границы толщи кварцсерицитовых сланцев и предполагаемые уровни рудоотложения.

По геологическим данным, толща рудовмещающих кварц-серицитовых сланцев располагается на расстояниях 180-315 м.

На отрезке 180-240 их сопротивление 400-800 Ом·м, что обусловлено повышенной долей кварца в составе флюида на начальном этапе формирования рудной метасоматической системы. А на отрезке профиля 240-310 м в сланцах, вмещающих три зоны вкрапленного оруденения, характерны сопротивления 200-400 Ом·м.

Поиски месторождений руд редких и радиоактивных элементов

- представляют собой самостоятельный этап последовательного изучения и освоения недр, который осуществляется на основе региональных геологических съемок мелких, средних и крупных масштабов.
- Эти геологические съемки проводятся комплексно по планшетам карты Казахстана и сопровождаются поисковыми операциями на выявление всех видов полезных ископаемых, в том числе и радиометрическими поисками урановых месторождений.
- По результатам региональных съемок и сопровождающих их предварительных поисков выясняется
- геологическое строение изучаемых территорий,
- -условия нахождения полезных ископаемых,
- -устанавливаются поисковые критерии и признаки обнаруженных месторождений,
- выделяются перспективные площади и дается оценка их рудоносности и ураноносности

Поиски месторождений руд редких и радиоактивных элементов

- осуществляются в две последовательные стадии.
- В первую стадию проводятся детальные поисковые работы в масштабах 1:50 000—1:10 000, целью которых является обнаружение рудопроявлений или поисковых признаков, указывающих на возможность их нахождения на глубине.
- Детальные поиски сопровождаются проходкой поверхностных горных выработок расчисток, канав или шурфов и мелких буровых скважин для расшифровки геологической природы радиометрических аномалий или ореолов рассеяния радиоактивных элементов и обнаружения первичной рудной минерализации.
- Первая стадия поисковых работ завершается прогнозной оценкой перспектив рудоносности опоискованных площадей и отдельных объектов, которая выражается в цифрах прогнозных запасов.

Поиски месторождений руд редких и радиоактивных элементов

- Вторая стадия поисково-разведочные работы проводятся только в пределах уже выявленных перспективных площадей, аномальных зон или рудопроявлений.
- В зависимости от сложности геологического строения, доступности и размеров изучаемого объекта масштабы поисково-разведочных работ могут изменяться от 1:25 000 до 1 : 1000.
- Целью поисково-разведочных работ является отбраковка аномальных зон и рудопроявлений, не имеющих промышленной ценности, и выбор объектов, заслуживающих постановки предвари-тельных разведочных работ.
- На основании тщательного геологического изучения и опробования поверхностных выработок для таких объектов определяются контуры рудных залежей в плане, а по данным единичных скважин обосновывается прогноз оруденения на глубину.
- Поисково-разведочные работы завершаются определением промышленного типа месторождения и оценкой перспектив рудоносности в пределах приповерхностного геологически обоснованного контура оруденения по категории С₂, а для глубоких и фланговых частей объекта — в цифрах прогнозных запасов

Геофизические методы

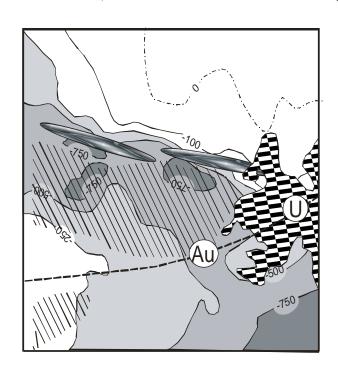
- методы решения геологических задач;
- заключающиеся в измерении геофизических полей;
- основанные на дифференциации горных пород по физическим свойствам.

Для изучения большинства полезных ископаемых и для решения общегеологических задач геофизические методы (признаки) - KOCBEHHЫE.

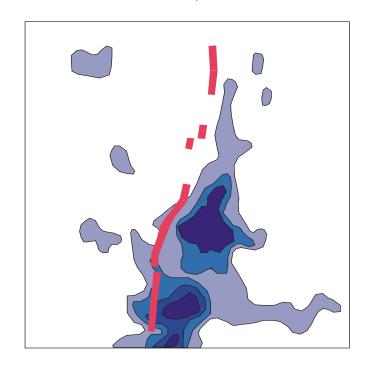
1. Полевая геофизика

- Гравиразведка (плотность)
- Магниторазведка (магнитная восприимчивость)
- Электроразведка (электропроводность, поляризуемость)
- Сейсморазведка (скорость упругих волн)
- Ядерная геофизика (радиоактивность)

2. Геофизические

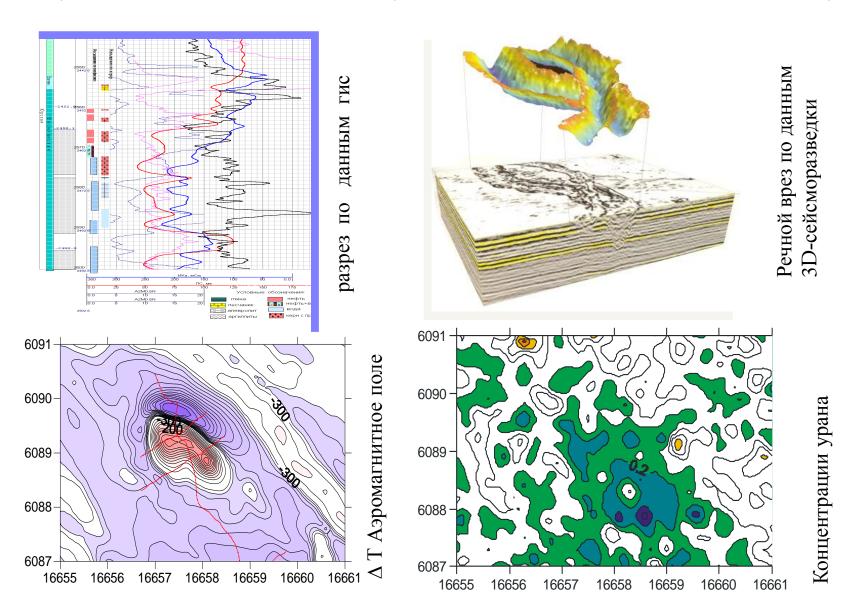

исследования в (электрические,магнитные,радиоактивные, **скважинах (каротаж)** упругие и плотностные свойства)

- При изучении закрытых и полузакрытых территорий выявляемые физические поля позволяют интерпретировать обусловившие их скрытые геологические тела, структуры, в том числе рудоконтролирующие, под рыхлыми отложениями, покровами эффузивов.
- Физические поля отражают геологическое строение участка не только в плоскости древнего рельефа, но и на глубоких горизонтах, например, при проведении глубинного геологического картирования.
- В этих случаях используются способы разделения физических полей, создаваемые геологическими объектами, расположенными на разных глубинах. Тем самым задача объемного картирования территории решается без привлечения больших объемов буровых работ.


Преимущества геофизических методов

1.Объективность и количественный (цифровой) характер информации

(Возможность многократного использования)



Карта надкларковых содержаний урана

2.Объемность получаемой информации

(непрерывность, детальность, глубинность, дистанционность, 3D-мерность)

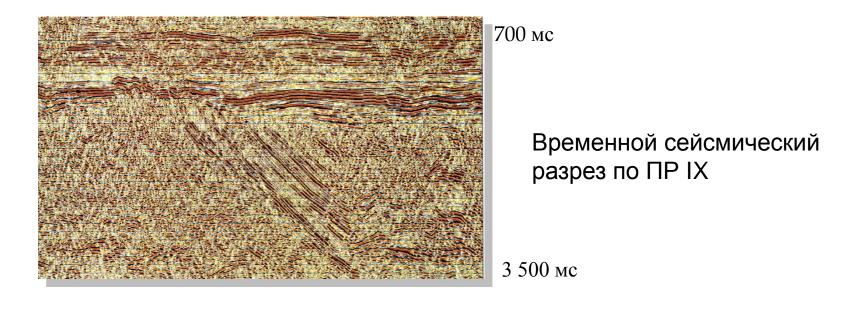
- У Из геофизических методов <u>только радиоактивные методы</u> обладают низкой глубинностью.
- В полевом и скважинном вариантах используются <u>только гамма- и нейтронное</u> <u>излучения</u> как наиболее проникающие.

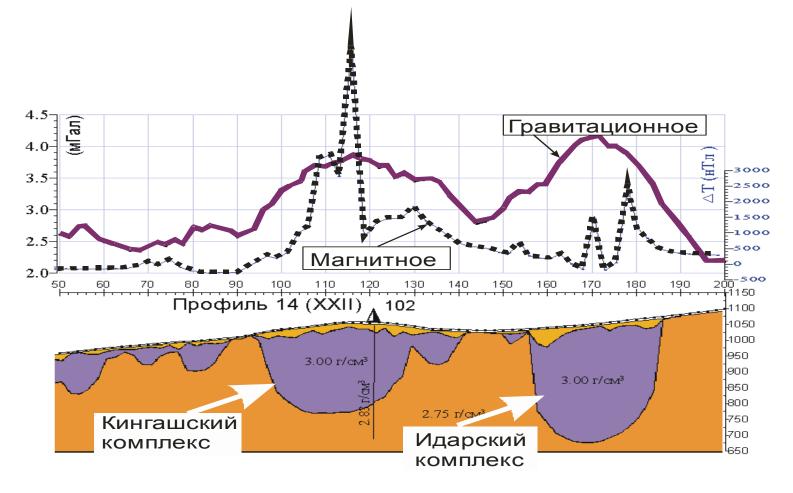
Закон ослабления **►**

$$N = N_o \cdot e^{-\mu \cdot x}$$

где N и No — количество (поток) гамма-квантов, прошедших расстояние x без взаимодействия, и их первоначальное количество; μ - линейный коэффициент ослабления гамма-излучения

В формулу коэффициента ослабления плотность, от которой он зависит, входит линейно. Отношение $M=\mu/\sigma$ не зависит от плотности и называется массовым коэффициентом ослабления.


3. Низкая стоимость и высокая производительность


Достоинства геофизических методов позволяют с их помощью решать геологические задачи, недоступные другим геологическим методам.

Недостатки геофизических методов

Однородность изучения объекта одним методом Неоднозначность интерпретации геофизических данных

Однозначное и полное решение геологической задачи

в комплексировании геофизических методов

Современный комплекс геофизических методов при проведении поисковых работ на уран

Генетические типы урановых

А. Эндогенные месторождения

- 1. Собственно магматические
- II. Пегматитовые
- III. Гидротермальные
 - Высокотемпературные (гипотермальные) месторождения
 - 2. Среднетемпературные (мезотермальные) месторождения

Б. Экзогенные месторождения

- Месторождения выветривания
- II. Осадочные
 - В. Метаморфогенные месторождения
- І. Ураноносные конгломераты
- II. Урансодержащие битумы в докембрийских породах.
- В. С. Домарев подразделяет каждую группу еще на подгруппы по условиям залегания месторождений (например, выделяется давидитовая минерализация в основных породах, ураново-медное оруденение в контактовых ореолах массивов гранитов и т. п.) и по морфологическому типу урановых руд (например, жильные руды, прожилковые и др.).

Г. Прочие месторождения

- 1) ураноносные асфальтиты, битумы, горные смолы;
- 2) концентрация урана в водоемах.

Рассмотрим отдельные генетические типы урановых месторождений с точки зрения геологических условий их образования и поисковых признаков.

ИНФИЛЬТРАЦИОННЫЕ МЕСТОРОЖДЕНИЯ УРАНА

Образование инфильтрационных месторождений урана связано с растворением, переносом и отложением урана грунтовыми и наземными водами, в которых он может находиться в форме истинных или коллоидных растворов. Эти растворы могут вознижать как при химическом разрушении урановых месторождений, так и за счет извлечения урана из различных пород, в которых его содержание не превышает кларков.

В последнее время группе инфильтрационных месторождений придается весьма большое значение. По условиям образования промышленные месторождения урана, связанные с ураноносными углями, многими геологами относятся к группе инфильтрационных месторождений.

Накопление урана инфильтрационным путем может происходить в самых различных породах. В одних случаях это накопление приводит к образованию промышленных месторождений, в других — лишь к повышенным содержаниям урана в породах.

Особое положение среди инфильтрационных месторождений занимают месторождения углей с промышленными концентрациями в них урана, которые по масштабу оруденения нередко имеют крупное промышленное значение. В последнее время промышленные концентрации урана инфильтрационного происхождения обнаружены в конгломератах (Япония) и других различных породах.

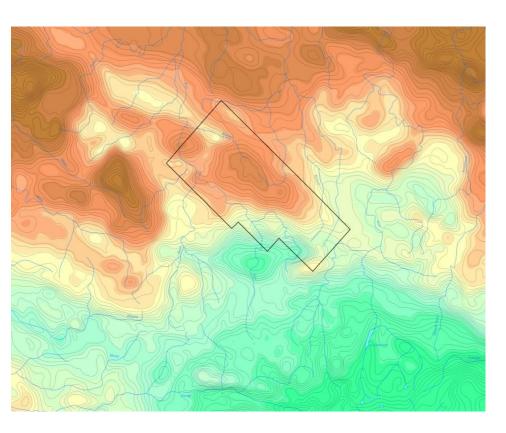
МЕТОДИКА ПОИСКОВ УРАНОВЫХ МЕСТОРОЖДЕНИ

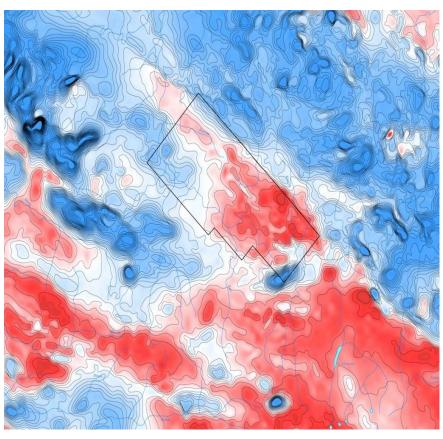
Ореолы рассеяния, создающиеся над урановыми или вок урановых месторождений, широко используются при поисурановых руд.

Радиационные ореолы рассеяния урана обнаруживаю с помощью радиометрических методов поисков; газовые (энационные) — эманационными методами; солевые — ураном рическими и люминесцентными методами; радиогидрохитеские — при радиогидрогеологических исследованиях; биог химические — геоботаническим и биогеохимическим методамеханические — при геологической и шлиховой съемке, а так нередко и радиометрическими методами; безореольные глубо залегающие урановые месторождения — на основании геоло ческого прогноза и вскрытия месторождений буровыми сквазнами и горными выработками.

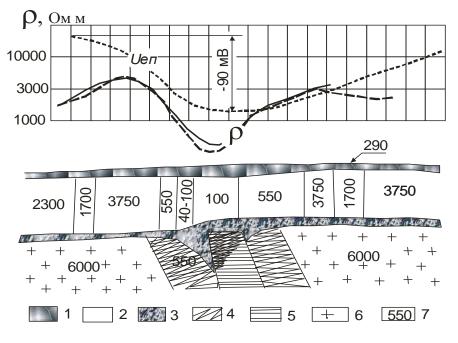
В связи со специфическими особенностями урановых и тор вых руд, заключающимися в радиоактивном их распаде, о бенно широкое применение при поисках урана и тория получи воздушные и наземные радиометрические поиски, основани исследовании радиационных ореолов рассеяния, а также эт национные (газовые) и радиогидрогеологические поиски, доп няемые другими видами исследований.

Среди известных современных методов поисков урановых и ториевых месторождений, характеризующихся большим разнообразием, могут быть выделены следующие:


- I. Радиометрические методы поисков
 - 1. Попутные поиски
 - 2. Аэрорадиометрические гамма-поиски
 - 3. Автомобильные гамма-поиски
 - 4. Пешеходные радиометрические поиски: маршрутные гамма-поиски; площадные гамма-поиски; площадные бета-поиски; гамма-поиски по шпурам; гамма-поиски в буровых скважинах (каротаж скважин)
- II. Эманационные методы поисков
- III. Люминесцентные методы поисков
- IV. Уранометрические методы поисков
- V. Радиогидрогеологические методы поисков
- VI. Геоботанические и биогеохимические методы поисков
- VII. Шлиховые методы поисков
- VIII. Горно-буровые методы поисков
- IX. Геофизические (общие) методы поисков.


(грави-,магнито-, электроразведка)

1. Эндогенные урановорудные поля преимущественно располагаются в зонах сиалической специализации земной коры или в областях взаимодействия сиалической и симафической специализаций. Характерно интенсивное проявление гранитизации, палеорифтогенеза, гранитогнейсового куполообразования.


* Повышенная радиоактивность

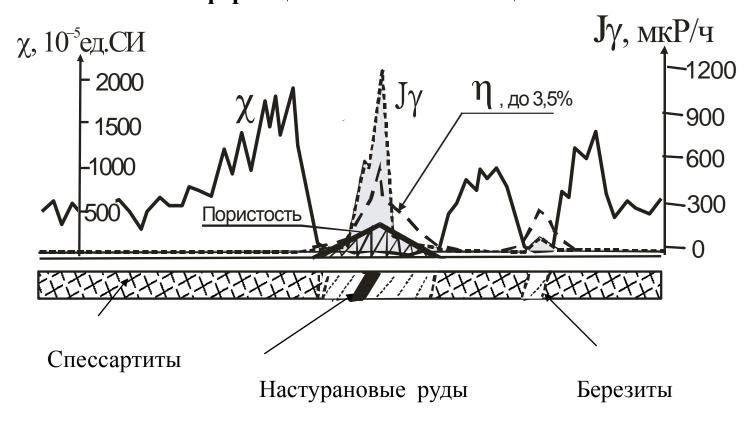
•Отрицательные аномалии магнитного поля

2. Структурный контроль является главным в локализации промышленного оруденения. Практически все промышленные эндогенные месторождения размещаются в зонах глубинных разломов древнего заложения, на участках их осложнений или встречи с поверхностями структурно-стратиграфических несогласий.

$N_{\underline{0}}$	Горные породы	σ, г/cm ³	χ, 10 ⁻⁵	р, Омм	Высокая
Π/Π^*			ед. СИ		радиоак-
					тивность
1	Платформенные	2,6	<100	100 -	
	отложения Атабаска			2000	
2	Реголиты	2,615	<100	300	
3	Геосинклинальные	2.66-2.76	до 300	1000-	+
	образования, PR_1		И	3000	
			выше		
4	Метасоматиты по	2,66	до		
	породам		3000 и		
	геосинклинального		выше		
	комплекса				
5	Граниты	2,62	до 300	6000	+
6	Зоны гранитизации	2,62-2,76	до		
			3000 и		
			выше		
7	Породы	2,76 и	100-	до	+
	кристаллического	выше	500	10000	
	фундамента, AR				
8	Графитистые сланцы	2,6-2,7	до	100-	+
			3000	550	

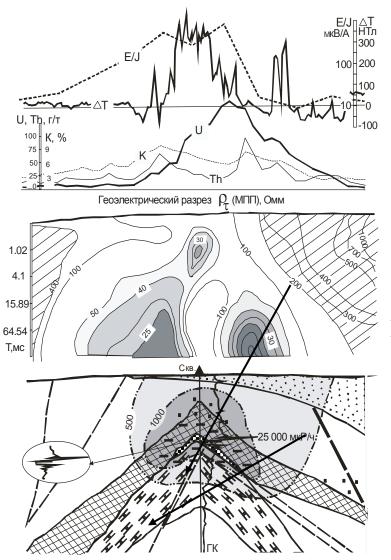
. Геоэлектрическая модель рудовмещающих пород месторождения Мидуэст.

1 - ледниковые отложения;


2 — формация Атабаска; 3 — реголиты;

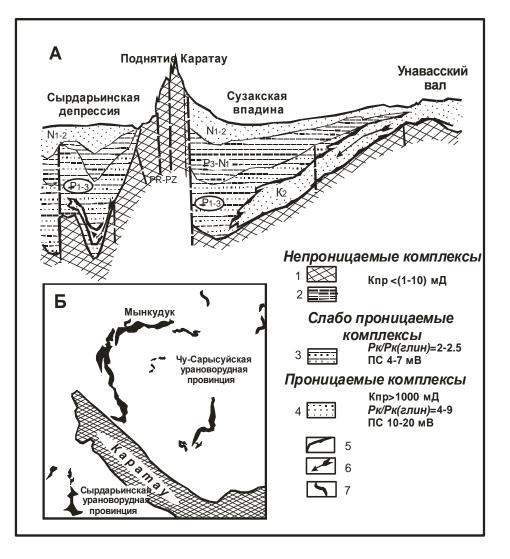
4 – измененные породы основания;

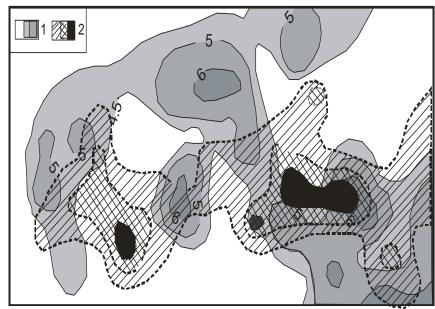
5 – углеродистые; метапилиты;


6 – породы фундамента; 7 – значение УЭС в Омм.

3. Гидротермальная урановая минерализация локализуется в заключительные этапы длительно развивающихся метасоматических изменений вмещающих пород. Характерны щелочные метасоматиты и метасоматиты формации кислотного выщелачивания.

Петрофизическая модель дайки спессартитов, пересеченной настурановым рудным телом


4. Литологический контроль урановой минерализации проявляется, прежде всего, в приуроченности скоплений урана к породам, обогащенным органическим веществом, к смене проницаемых пород на породы-водоупоры.


Углеродистые сланцы: (высокие поляризуемость; магнитная восприимчивость; низкое удельное электрическое сопротивление-УЭС)

Кварцево-карбонатные метасоматиты:

(низкин: поляризуемость; магнитная восприимчивость; высокое - УЭС)

Физико-геологические условия локализации месторождений в зонах пластового окисления

Положение урановорудной минерализации (2) на плане средних значений коэффициентов фильтрации (1) (по Вершкову, Петрову, Берикболову, Хазанову и др., 2003,с изменениями). Изолинии Кф — в м/сут

АЭРОРАДИОМЕТРИЧЕСКИЕ ГАММА-ПОИСКИ

В задачу аэрорадиометрических поисков входит изучение радиоактивности пород больших регионов, выделение перспективных площадей под наиболее детальные исследования и возможное обнаружение радиоактивных аномалий с воздуха. Они проводятся путем аэрогамма-съемки местности в комплексе с магнитометрическими воздушными исследованиями пород. Эти съемки являются наиболее быстрым способом исследования и оценки больших площадей и широко используются при поисках радиоактивных элементов, особенно в начальный этап исследования регионов.

Радиоактивные аномалии представляют собой суммарны величины гамма-активности, источником которой могут быт различные радиоактивные элементы: уран, торий и др.

Среди выявленных аномалий надо различать площадны вызванные массивами различных пород, обнаруживающих повышенную радиоактивность, как, например, некоторые разновилности кислых и щелочных пород, и локальные, обусловленны минерализованными ураном или торием зонами.

Над участками локальных аномалий производятся много кратные полеты в различных направлениях с высот 25, 50, 75 100 м для более детального изучения аномалии и определени ее площади.

Для точной привязки аэромаршрутов и выявленных анома лий используется готовая топографическая или геологическа основа, на которой визуально отмечаются пункты аномалий, дл этого используются также фотографические способы фиксаци аномальных участков. Аэрорадиометрические поиски масштаба (1:25 000—1:10 000) ведутся в открытых ураноносных провинциях для обнаружения новых радиоактивных аномалий, а по ним — рудных тел.

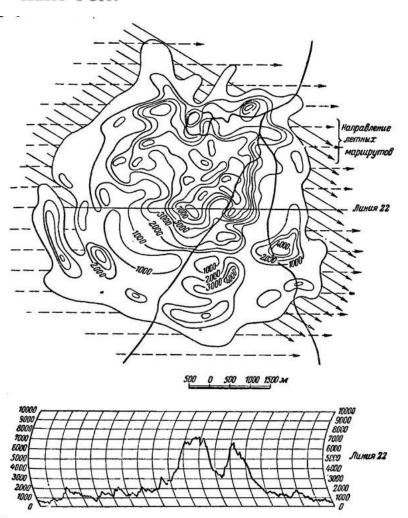


Рис. 93. Аэрорадиометрическая карта щелочного интрузива с пирохлорной минерализанией (СРМ—импульсы в минуту). Бразилия (по П д Мак-Фа-

Рис. 92. Изолинии гамма-поля над выходом активного рудного тела на площади 20×20 м в % к интенсивности гамма-излучения на земной поверхности (по Л. Ч. Пухальскому, 1957)

Площадные гамма-поиски

Проводятся на участках с тювышенной гамма-активностьк пород для точного оконтуривания их и возможного выявления среди них аномальных участков, обусловленных развитием ми нерализованных зон с радиоактивными элементами.

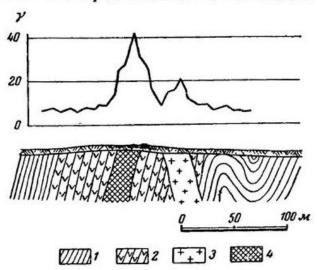


Рис. 94. Гамма-профиль над обнажением дочетвертичных пород

филлиты;
 хлорит-серицитовые сланцы;
 гранит-порфиры;
 кварц-карбонатные и сульфидные прожилки в зоне разлистования

При производстве площадных гамма-поисков в масштабах $1:5\,000-1:1\,000$, относящихся к детальным исследованиям, на местности разбивается сеть профилей, которые ориенти-руются в наиболее целесообразном направлении— вкрест предполагаемого простирания пород, зон разломов, или контактов различных толщ и т. п.

Разбивка сети профилей обычно производится с помощью компаса, буссоли или теодолита. Эта сеть наносится на план, а на местности она закрепляется пикетами (точками будущих наблюдений) через каждые 5—10 м, иногда чаще. При съем-

АВТОМОБИЛЬНЫЕ ГАММА-ПОИСКИ

Автомобильные гамма-поиски урановых месторождений проводятся там, где по условиям проходимости возможно передвижение на автомашинах.

Средняя скорость передвижения автомашины при автомобильной гамма-съемке не более 15 км/час при хорошей проходимости местности для автомашин.

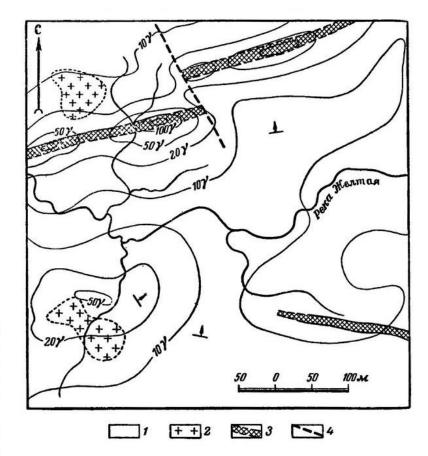
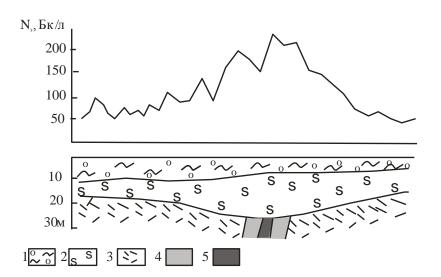



Рис. 95. Планшет радиометрической наземной съемки 1 — палеозойские песчаники и сланцы; 2 — граниты; 3 — окварцованные зоны с сульфил ной минерализацией; 4 — сбросо-сдент

Пример использования эманационной съемки при поисках урановых руд (по Г.Ф. Новикову)

1 – суглинок, 2 – кора выветривания, 3 – эффузивные породы, 4 – зона брекчирования, 5 – рудное тело.

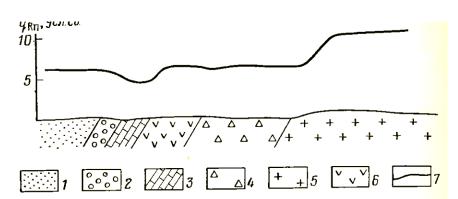


Рис. 35. График концентрации радона по картировочному профилю

1 — песчаник; 2 — конгломерат; 3 — известняк; 4 — гранит-порфир; 5 — гранит; 6 — порфирит; 7 — кривая концентрации радона в почвенном воздухе

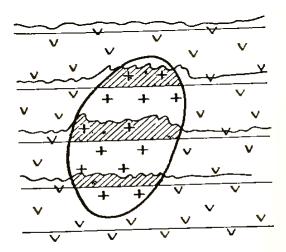


Рис. 36. Гамма-поле над гранитной интрузией

Геофизические исследования скважин

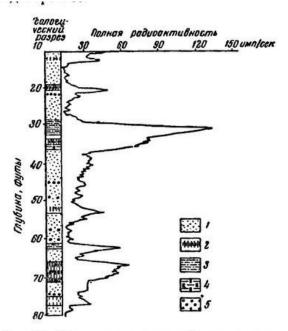


Рис. 96. Литологическая расшифровка результатов гамма-каротажа (месторождение карнотитовых песчаников плато Колорадо, США). Из материалов Первой женевской конференции по мирному использованию атомной энергии, 1955

I — песчаник; 2 — аргиллит от зеленого до серого цвета; 3 — темно-синий аргиллит; 4 — красный и зеленый аргиллит; 5 — аргиллитовая галька

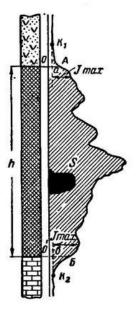


Рис. 99. Определение мощности и содержания урана в пачке пластов по краевым максимумам (по Л. Ч. Пухальскому, 1957)

A, B— точки на внешних крыльях краевых максимумов, в которых J=1/2 J_{max} ; S— площадь аномалии; J_{max} , J'_{max} —интенсивность радиации в краевых максимумах аномалии; h— мощность пачки; пунктир—уровень нормального фона во вмещающих породах

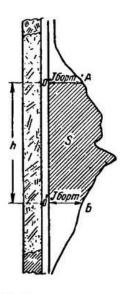


Рис. 100. Определение мощности и содержания урана в пачке пластов по бортовому содержанию (по Л. Ч. Пухальскому, 1957) А, Б— точки на крыльях аномалии, определяющие мощность пачки с промышленным содержанием урана; J_{60pm} — интенсивность гамма-радиации, соответствующая бортовому содержанию урана; S— площадь аномалии; h— мощ-

ность пачки

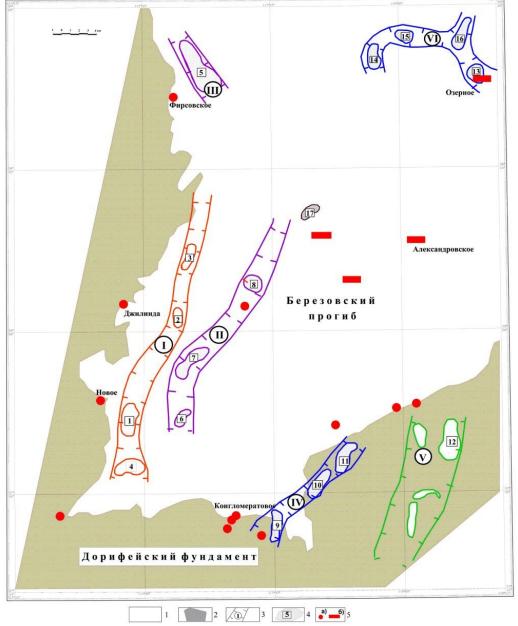
Рекомендуемые к использованию геофизические технологии

Рекомендации по обработке и интерпретации материалов аэрогеофизических съемок с целью прогноза и поисков твердых полезных ископаемых

Рекомендации по применению сейсморазведки в рудных района

Рекомендации по наземной гравиразведке

Рекомендации по технологии работ и интерпретации данных аудиомагнитотеллурического (АМТ) метода в целях прогноза и поисков рудных месторождений

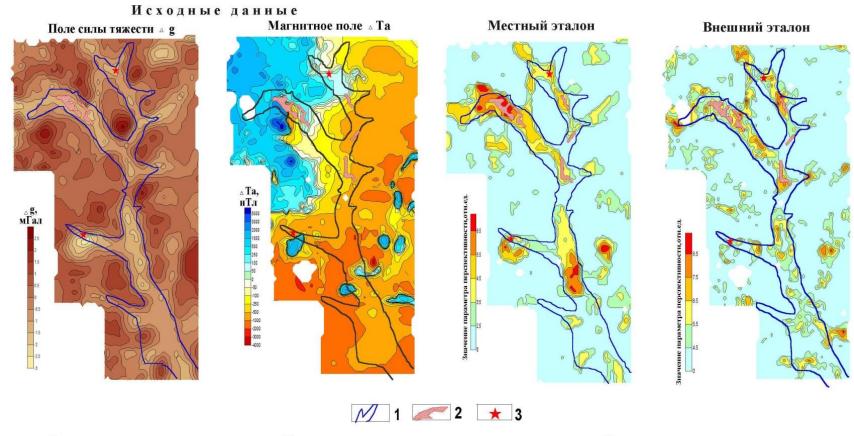

Методические рекомендации: «Технология работ и интерпретация данных геоэлектрохимических методов на рудных объектах»

Методические рекомендации по импульсной электроразведке

Рекомендации по технологии работ и интерпретации данных высокоточной скважинной магниторазведки на рудных объектах Инструкция по проведению геофизических исследований рудных скважин

Методические основы поисков урана на основе моделирования и рациональных геолого-геофизических комплексов

Чарский урановорудный район. Схема расположения перспективных зон и участков (компью герный прогноз по гравимагнитным и АГС-данным с использованием эталонов "типа несогласия") 1 - площадь распространения пород платформенного чехла R-Q возраста, 2 - метаморфизованные породы дорифейского


5 - известные проявления урановой минерализации: гидротермальные (а), экзогенные (б)

Пример локализации поисковых площадей

^{1 -} площадь распространения пород платформенного чехла R-Q возраста, 2 - метаморфизованные породы дорифейского фундамента, 3 - перспективные зоны и их номера: первой очереди отработки - оранжевого цвета, второй очереди - фиолетового цвета, третьей очереди - синего цвета, четвертой очереди - зеленого цвета; 4 - перспективные участки и их номера,

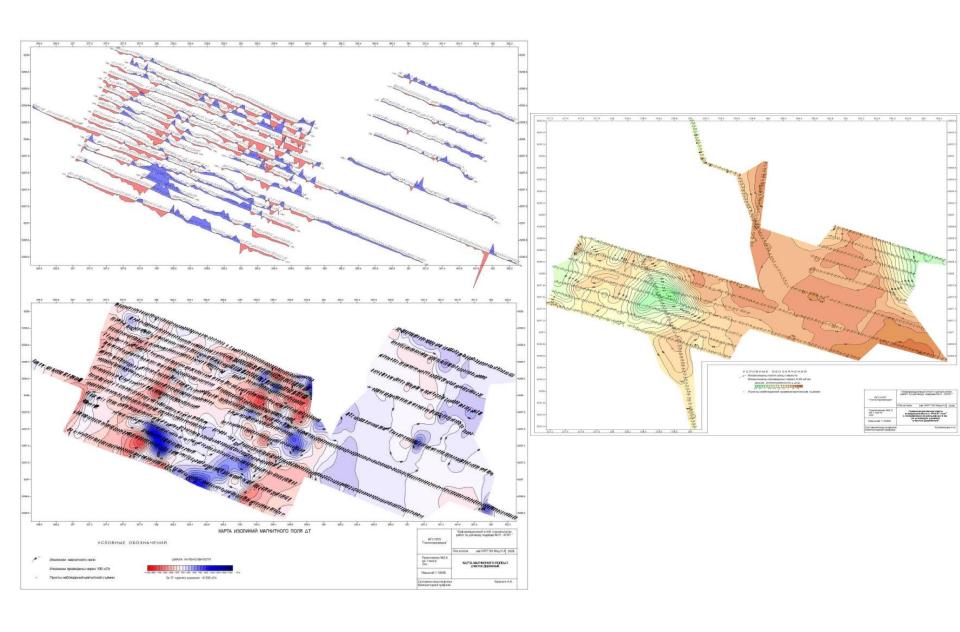
поисковой геофизики

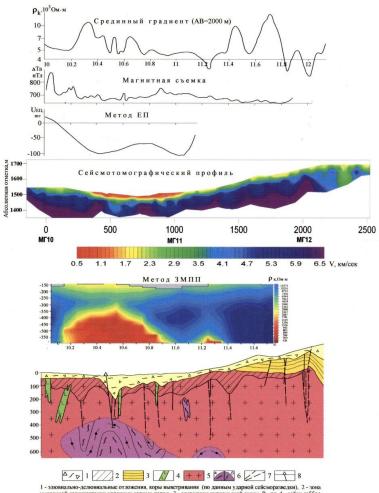
Картирование палеодолины по геофизическим данным масштаба 1:50000

1-границы палеодолины, 2 - рудные залежи месторождения, 3 - рудопроявления

Основные элементы физико-геологической модели (на примере Стрельцовского рудного поля)

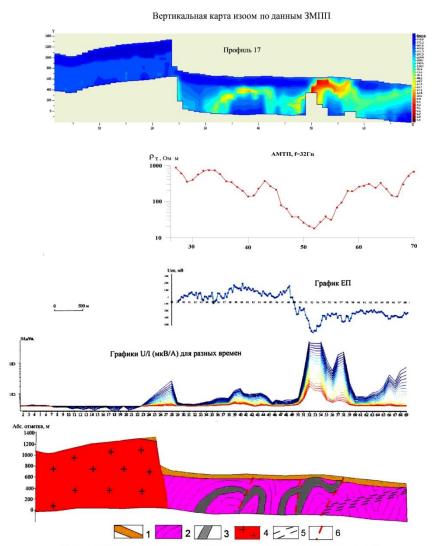
вулканические образования, внутренняя часть которых выполнена сложно переслаивающимися вулканогенно-осадочными породами, имеющими аномально **низкую плотность** по сравнению с вмещающими их породами фундамента;


специфика геологического разреза вулканических построек, которая находит отражение в переменном магнитном поле невысокой интенсивности, обусловленном незакономерным распределением магнитных масс;


узлы пересечения тектонических нарушений различных направлений, создающие крутопадающие зоны проницаемости с пониженными электрическим сопротивлением и плотностью, что является предпосылкой для их картирования методами гравиразведки и электроразведки;

развитие многоэтапных вулкано-тектонических процессов, создавших высокую гетерогенность геологического разреза, что находит отражение в трансформантах гравитационного, магнитного и радиогеохимического полей;

наличие гранитных комплексов - источников питания ураном, которые формируют рудные образования в областях регионального разуплотнения земной коры.


Картирование вулканической структуры гравимагнитными методами

1 - элювидьно-деловидьные отложения, коры выветривания (по двиным ударной сейскоразведки), 2 - эона умеренной денитеграции коренным горным прод. 3 - отложения пурвольской свитя R 2 рр, 4 - дайжи габбро-дивбазов D PR 2 d, 5 - гравиты инчагского комплекса УPR₁ n, 6 - предполагаемые ксенолить тнейсов сланиев квари-полекошил-битотовых, квари-полекошил-битотовых, (б) вичагского комплекса PR₁n, 7 - предполагаемые разрывные на варимения, 8 - просектым буровая скважина.

Картирование ксенолита комплексом геофизических методов

Участок Кабарожий. Схематический геолого-геофизический разрез по пр.17

Выявление погребенных графитизированных пород комплексом методов электроразведки

терригенные образования рифея, 2 - породы нижнего протерозоя, 3 - горизонты графитизированых пород, 4 - граниты кодарского комплекса, 5 - предполагаемые зоны трещиноватости, 6 предполагаемые разломы

Контрольные вопросы

- 1. Комплексы геофизических методов на региональном этапе минерагенических исследований
- 2. Комплексы геофизических методов на этапе прогнозирования рудных объектов
- 3 Комплексы геофизических методов при поисках рудных объектов
- 4 Комплексы геофизических методов на разведочном этапе изучения рудных объектов
- 5. Комплексы геофизических методов при детализации рудных подсечений на этапе освоения месторождений

Практические примеры!!!!