

АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Преподаватель:

Бекбаев А.Б., д-р. техн. наук, профессор кафедры «Энергетика»

bekbaev a@mail.ru

АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Лекция №6

Ветроэнергетика

После завершения урока Вы будете знать:

• Об энергии ветра. Методах расчета мощности ветроустановок. О потенциалах ветроэнергетики. Об истории использования энергии ветра. О динамике развития ВЭ. О развитии ВЭ в Казахстане. Об аккумулировании энергии. Об основных требованиях к ним. О преимуществах и недостатках ВЭУ.

Ветроэнергетика

Воздушный поток, как и любое движущееся тело, обладает энергией движения, или запасом кинетической энергии, определяемой выражением

 $mV^2/2$,

где m — масса воздуха, протекающая через заданное поперечное сечение; V — скорость потока воздуха.

Мощность ветроустановки (мощность генератора) может быть определена по формуле

$$N = 0,000481 \, \eta \, V^3 D$$
, κB_T ,

где η — коэффициент использования энергии ветра, который для лучших современных ВЭУ равен 0,4—0,5 при теоретически предельном η = 0,593;

V — скорость потока воздуха, м/с;

D – диаметр ветроколеса, м.

Потенциал энергии ветра подсчитан более или менее точно: по оценке Всемирной метеорологической организации ее запасы в мире составляют 170 трлн кВт-ч в год, в том числе в России – около 50 трлн кВт-ч/год. Экономический потенциал ветровой энергии России составляет примерно 260 млрд кВт·ч/год, то есть около 30 % производства электроэнергии всеми электростанциями страны.

В Европе, вначале во Франции, ветряные мельницы появились в XII веке. В Англии работали мельницы, однотипные по принципу действия с французскими. В Германии первая мельница была построена в 1393 г. Из Германии они распространились в другие страны. В XIV столетии голландцы широко использовали ветряные двигатели для осущения болот и озер, а в начале XVII века уже большая часть территории Голландии осущалась с помощью ветроустановок. В этот же период появились усовершенствованные конструкции мельниц и новые ветряные двигатели, которые использовали для привода машин бумагоделательных фабрик, лесопилок и других устройств. В начале XVIII века в Голландии работали 1200 ветроустановок, которые предохраняли 2/3 территории страныот обратного превращения в болота.

Конструкции первых ветряных мельниц в России были, повидимому, заимствованы в Германии, их и называли немецкими. К началу XVIII века число мельниц в России стало достаточно большим и их применение приобрело государственное значение. В XVIII–XIX веках мельницы сооружались практически повсеместно; к началу Первой мировой войны в России эксплуатировалось более 200 тыс. мельниц, на которых ежегодно перемалывали около 2/3 всего товарного зерна. К середине XIX века в США эксплуатировалось почти 6 млн маломощных ветродвигателей для подъема воды, выработки электроэнергии и выполнения других простых работ. Около 200 тыс. ветроустановок насчитывается в США и сегодня. Первое изложение теории ветродвигателя относят к началу XVIII века. В более систематизированном виде она появилась в конце XIX века в Америке и Европе, а первый ветрогенератор был сконструирован в Дании в 1890 г.

Динамика развития ветроэнергетики (МВт)

Страна	2003	2005	2006	2007	2008
Германия	14 609	18 428	20 622	22 247	23 903
США	6370	9149	11 603	16 818	25 170
Испания	6202	10 028	11 615	15 145	16 754
Индия	2110	4430	6270	7580	9645
Китай	567	1260	2405	6050	12 210
Дания	_	3122	3136	3150	3180
Италия	-	1718	2123	2726	3736
Великобритания	-	1353	1962	2389	3241
Франция	248	757	1567	2454	3404
Португалия	_	1022	1716	2150	2862
Нидерланды	-	1224	1558	1746	2225
Канада	-	683	1451	1846	2369
RинопR	506	1040	1394	1538	1880
Австрия	-	819	965	982	995
Австралия	-	579	817	817,3	1306

Страна	2003	2005	2006	2007	2008
Греция	1-	573	746	871	985
Ирландия	9-9	496	746	805	1002
Швеция	9-0	510	571	788	1021
Норвегия	100	270	325	333	428
Бразилия	9-	29	237	247,1	341
Бельгия	-	167,4	194	287	_
Польша	3-2	73	153	276	472
Египет	-	145	230	310	365
Турция	-	20,1	50	146	433
Чехия	-	29,5	54	116	_
Финляндия	-	82	86	110	_
Украина	-	77,3	86	89	_
Болгария	-	14	36	70	_
Венгрия	71_7	17,5	61	65	_
Эстония	72	33	32	58	_
Литва	7_7	7	48	50	_
Люксембург	7_1	35,3	35	35	_
Аргентина	7_7	26,8	27,8	29	_
Латвия	7_7	27	27	27	_
Россия	10	14	15,5	16,5	_
Иран	-	23	48	66	85

Суммарные установленные мощности ВЭУ в мире (МВт)

1997	1998	6661	2000	2001	2002	2 0 0 3	2004	2005	2006	2007	2008	2009	2010 (прогноз)
7475	6996	13696	18 039	24 320	31 164	39 290	47 686	59 004	73 904	93 849	120 791	140 000	170 000

За 23 года, с 1985 по 2008 г., суммарная мощность ВЭУ в мире возросла с 1097 МВт до 120 791 МВт. К 2008 г. на первое место по установленной мощности ВЭУ вышли США с 25 170 МВт, на втором месте Германия (23 903 МВт), на третьем Испания (16 754 МВт), на четвертом Китай (12 210 МВт) и на пятом Индия (9645 МВт).

Американская (AWEA) и Европейская (EWEA) ветроэнергетические ассоциации составили в 1999 г. весьма оптимистический прогноз развития ветроэнергетики в мире, цель которого достижение к 2020 г. 10%-ной доли ветроэнергетики в мировом производстве электроэнергии. Пока развитие ветроэнергетики идет даже с превышением этого прогноза (по прогнозу в 2002 г. -26 901 МВт, фактически -31164 МВт; в 2004 г. прогноз — 41 781 МВт, фактически - 47 686 МВт).

Возможности быстрого развития ветроэнергетики в условиях недостатка бюджетных средств демонстрирует в последние годы Индия. В 1992 г. в Индии работали ветровые электростанции общей мощностью 40 МВт, а в 2000 г. страна вышла на пятое место в мире, опередив Нидерланды, Италию, Великобританию. Это стало возможным за счет государственного участия в планировании развития ветроэнергетики и создании выгодных условий для вложения средств частных предпринимателей – владельцев ВЭС.

В 1992 г. в Индии было создано Министерство нетрадиционных источников энергии, которое осуществляет планирование развития отрасли, разработку мер экономического стимулирования для привлечения инвестиций и кредитов. Используя бюджетные средства, Министерство проводит выбор объектов перспективного строительства, создает демонстрационные проекты, обеспечивает сертификацию оборудования. При министерстве организован фонд субсидирования и выдачи кредитов для строительства объектов ВИЭ. Решение о выдаче кредита принимается после экспертизы проекта при наличии у предпринимателя 25 % средств от стоимости проекта и соглашения о поставке оборудования. Кредит выдается на 6 лет с освобождением от выплаты процентов по кредиту на 1 год.

- Для объектов ветроэнергетики в Индии введены следующие льготы:
- освобождение от налогов на прибыль в первые пять лет после ввода электростанции;
- разрешение на списание 100 % стоимости ВЭС через один год эксплуатации;
- освобождение от налогов с продаж;
- беспошлинный ввоз комплектующих для производства ВЭС и запчастей к ним;
- гарантированная стоимость продажи энергии, вырабатываемой ВЭС, в размере 7–8 центов/кВт·ч.

Развитию ветроэнергетики способствуют крупные исследовательские программы, проводимые как в отдельных странах, так и в целых регионах. Так, в США исследовательская программа по ветроэнергетике, финансируемая из федерального бюджета, разработана и успешно реализуется Институтом электроэнергетики. Совместно с Министерством энергетики ведется разработка новой техники, оценка эффективности проектов, оптимизация характеристик ветровых турбин. Программа предусматривает также обучение эксплуатационного персонала, обсуждение новых проектов, координацию сотрудничества с ЕЭС.

Около 95 % вырабатываемой в мире ветровой электроэнергии производится ВЭУ, объединенными в комплексы (фермы, парки и т. д.; в нашей терминологии – ВЭС), причем большая часть — на ВЭС, работающих параллельно с электрическими системами. Такие комплексы эффективно используются как для работы на объединенные электрические сети большой мощности, так и для работы на сети соизмеримой мощности в сочетании с другими (резервирующими или аккумулирующими) источниками энергии.

Ветроэнергетические комплексы, состоящие из комбинации ВЭУ с другими источниками энергии (например, дизельными электростанциями) или аккумуляторами, обеспечивают непрерывное энергоснабжение автономных потребителей независимо от наличия и интенсивности ветра.

Развитию ветровой энергетики сопутствует определенная техническая проблема. Ветер является нерегулируемым источником энергии. Выработка ВЭС зависит от силы ветра – фактора, отличающегося большим непостоянством. Соответственно, выдача электроэнергии с ветрогенератора в энергосистему отличается большой неравномерностью – как в суточном, так и в недельном, месячном, годовом и многолетнем диапазонах. Учитывая, что энергосистема сама имеет неравномерную нагрузку (пики и провалы суточного графика), регулировать которую ветроэнергетика не может, введение значительной доли ветроэнергетики в энергосистему способствует ее дестабилизации. Поэтому ветроэнергетика требует резерва мощности в энергосистеме (например, в виде газотурбинных станций), а также механизма сглаживания неравномерности выработки ВЭС, например, с помощью ГЭС или ГАЭС.

Обеспечение аккумулирования энергии, вырабатываемой ВЭУ, является одной из важнейших проблем ветроэнергетики. Для ее решения необходимы разработка соответствующих методов и создание экономичных и эффективных устройств. Выбор типа и емкости аккумулирующего устройства, по сути, относится к области оптимизации надежности электроснабжения. Вследствие того, что ветер как энергоисточник обладает большой изменчивостью и его режимы предсказать заранее с большой точностью трудно, приходится во многих случаях комплектовать ВЭУ аккумулирующим устройством или использовать дублирующую неветровую установку. Преимущества таких методов и предпочтительность их применения в тех или иных конкретных случаях устанавливают на основе техникоэкономического сравнения вариантов.

- С помощью аккумулирующих устройств могут решаться следующие задачи:
- выравнивание пульсирующей мощности, которую вырабатывает ветроагрегат в условиях изменяющейся скорости ветра;
- согласование графиков производства и потребления энергии с целью питания потребителей в периоды, когда ветроагрегат не работает или его мощности не хватает для обеспечения всей присоединенной нагрузки;
- увеличение суммарной выработки ВЭУ;
- возможность получения пиковой мощности в течение короткого промежутка времени.

- Основными требованиями, предъявляемыми к аккумулирующим устройствам ВЭУ, являются:
- высокий к.п.д. и малая стоимость на единицу запасаемой энергии;
- надежная и эффективная работа в условиях выработки ветроагрегатом непостоянной по своим параметрам энергии (мощности);
- гарантированное покрытие заданного графика нагрузки;
- простота устройства и технического обслуживания, высокая надежность и безопасность эксплуатации.

Наличие аккумулирования может облегчить диспетчерские проблемы в энергосистемах с ВЭС, возникающие вследствие изменчивости скорости ветра. Однако аккумулирование и использование энергии ветра не так тесно связанны, как иногда полагают. Использование крупных аккумулирующих установок является одним из методов сглаживания суточных графиков нагрузки энергообъединений; такие аккумуляторы должны конкурировать с альтернативными пиковыми установками. Использование аккумулирующих устройств для каждой ВЭУ или даже группы ВЭУ (ВЭС) может оказаться нецелесообразным при наличии в энергообъединении достаточных резервов регулирующей мощности, поскольку эти устройства стоят довольно дорого.

Зависимость себестоимости ветровой электроэнергии от скорости ветра

Скорость ветра, м/с	Себестоимость, центов/кВт-ч
7,16	4,8
8,08	3,6
9,32	2,6

- В России считается, что применение ВЭУ в быту для обеспечения электричеством малоцелесообразно по следующим причинам:
- высокая стоимость инвертора, составляющая примерно 50 % стоимости всей установки (применяется для преобразования переменного или постоянного тока, получаемого от ветрогенератора, в напряжение 220 В, 50 Гц, и синхронизации с внешней сетью в случае параллельной работы генератора);
- высокая стоимость аккумуляторных батарей, составляющая около 25 % стоимости установки (используются в качестве источника бесперебойного питания при отсутствии внешней сети или при нарушениях электроснабжения);
- для обеспечения надежного электроснабжения к ВЭУ иногда добавляют дизель-генератор, сравнимый по стоимости со всей установкой.

- В некоторых случаях экономически более целесообразным может быть получение с помощью ветрогенератора не электрической энергии промышленного качества, а постоянного или переменного тока (переменной частоты) с последующим преобразованием его в тепло для обогрева помещений и получения горячей воды. Эта схема имеет несколько преимуществ:
- в условиях России отопление является основным энергопотребителем любого дома;
- схема ветрогенератора и управляющей автоматики кардинально упрощается;
- в качестве аккумулятора энергии можно использовать обычный бойлер с водой для отопления и горячего водоснабжения;
- потребление тепла не так чувствительно к качеству и бесперебойности: температуру воздуха в помещении без ущерба для потребителей можно поддерживать в широком диапазоне (19–25 °C), а в бойлерах горячего водоснабжения 40–80 °C.

Ветряные генераторы практически не потребляют ископаемого топлива. Работа ветрогенератора мощностью 1 МВт за 20 лет эксплуатации (нормативный срок) позволяет сэкономить примерно 29 тыс. т угля или 92 тыс. баррелей нефти.

ВЭУ производят две разновидности шума:

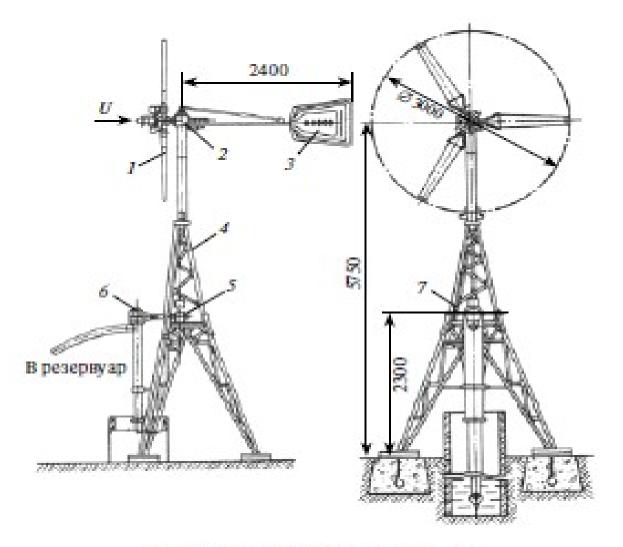
- механический шум (от работы механических и электрических компонентов);
- аэродинамический шум (от взаимодействия ветрового потока с лопастями установки).

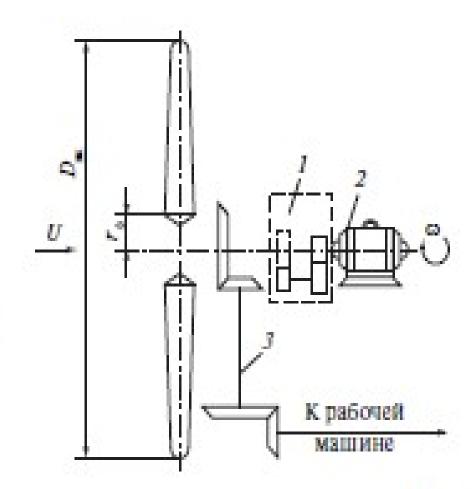
Уровни шумов от различных источников

Источник шума	Уровень шума, дБ
Шум от ветрогенератора в непосредственной близо- сти от оси ветроколеса	Около 100
Шум от ветрогенератора на расстоянии 350 м	35-45
Шум от турбин реактивного двигателя на расстоянии 250 м	105
Шум от отбойного молотка в 7 м	95
Шум от грузовика при скорости 48 км/час в 100 м	65
Шум от легковой машины при скорости 64 км/час	55
Шумовой фон в офисе	60
Шумовой фон ночью в деревне	20-40
Болевой порог человеческого слуха	120

Использование земли. ВЭУ фактически занимают только 1 % от всей территории ветряной фермы. На 99 % площади можно заниматься сельским хозяйством или другой деятельностью, что и происходит в таких густонаселенных странах, как Дания, Нидерланды, Германия. Фундамент ВЭУ, занимающий около 10 м в диаметре, обычно полностью находится под землей, позволяя расширить сельскохозяйственное использование земли практически до самого основания башни. В некоторых странах земля сдается в аренду, что позволяет фермерам получать дополнительный доход. В США стоимость аренды земли под одной ВЭУ составляет 3000-5000 долларов в год.

- Существующие системы ветродвигателей по схеме устройства ветроколеса и его положению в потоке ветра разделяются на три класса.
- Первый класс включаем ветродвигатели, у которых ветровое колесо располагается в вертикальной плоскости; при этом плоскость вращения перпендикулярна направлению ветра и, следовательно, ось вращения горизонтальна и параллельна потоку. Такие ветродвигатели называются крыльчатыми или пропеллерными (рис. 12.1 и 12.2). Хорошие аэродинамические качества крыльчатых ветродвигателей, конструктивная возможность изготавливать их на большую мощность, относительно небольшой вес на единицу мощности основные преимущества ветродвигателей этого класса, которые нашли широкое применение.
- В зависимости от типа ветроколеса и быстроходности крыльчатые ветродвигатели разделяются на три группы:
- многолопастные, тихоходные, с быстроходностью $Z \le 2$ (быстроходностью называется отношение окружной скорости конца лопасти ωR к скорости ветра V);
- малолопастные, тихоходные, в том числе ветряные мельницы, с быстроходностью Z > 2;
- малолопастные, быстроходные, $Z \ge 3$.




Рис. 12.1. Ветродвигатель ВБЛ-3:

1— ветроколесо; 2— головка; 3— хвост; 4 — башня; 5— нижний редуктор; 6— водоподъемник; 7 — рукоятка пуска-останова

Рис. 12.2. Принципиальная схема ветродвигателя крыльчатого типа с горизонтальной осью вращения:

1 — реду ктор; 2 — генератор;

3 - вертикальный вал

- Ко второму классу относятся системы ветродвигателей с вертикальной осью вращения ветрового колеса. По конструктивной схеме они разделяются на две группы:
- карусельные, у которых нерабочие лопасти либо прикрываются ширмой, либо располагаются ребром против ветра;
- роторные ветродвигатели.
- К третьему классу относятся ветродвигатели, работающие по принципу мельничного колеса и называемые барабанными. У этих ветродвигателей ось вращения горизонтальна и перпендикулярна направлению ветра. Карусельные и барабанные ветродвигатели не нашли широкого применения вследствие присущих им недостатков.
- На рис. 12.3 показано большинство принципиальных конструктивных типов ветроприемных устройств.

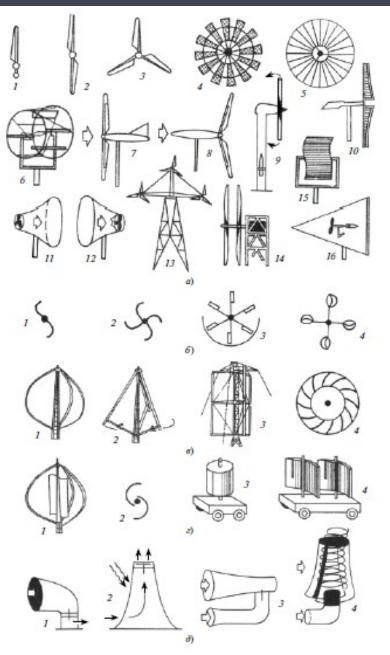
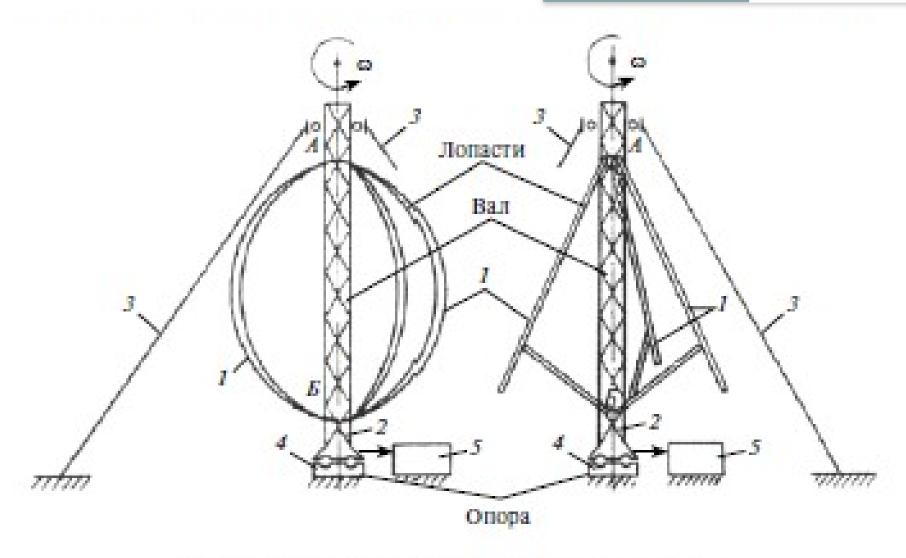


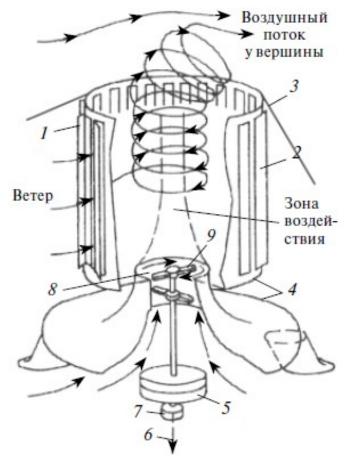
Рис. 12.3. Типы ветроприемных устройств

а) с горизонтальной осью вращения: 1 – однолопастное ветроколесо; 2 – двухлопастное; 3 – трехлопастное; 4 – многолопастное; 5 – многолопастное велосипедного типа; 6 – барабанное; 7 – ветроколесо, направленное навстречу потоку; 8 – ветроколесо, расположенное по потоку (за башней); 9 -ветроколесо с пневматической передачей мощности; 10 – парусное крыло; 11 – ветроколесо с диффузором; 12 – ветроколесо с концентратором энергии; 13 – многоветряковое с несколькими ветроколесами; 14 – ветроколеса встречного вращения; 15 – ротор Савониуса; 16 – ветроколесо, использующее энергию свободных вихрей; б) с вертикальной осью вращения с использованием силы сопротивления: 1 –ротор Савониуса; 2 – ротор Савониуса многолопастной; 3 – ротор пластинчатый; 4 – ротор чашечный; в) с вертикальной осью вращения с использованием подъемной силы: 1 – ротор Дарье Ø-образный; 2 – ротор Дарье ∆-образный; 3 – ротор с прямыми лопастями (Giromill); 4 – ветротурбина; г) с вертикальной осью вращения комбинированного типа: 1 – роторы Дарье ∅–образный и Савониуса; 2 – ротор Савониуса щелевой; 3 – ротор с использованием эффекта Магнуса; 4 – с несущими поверхностями; д) с вертикальной осью вращения других типов: 1 – ветроколесо с дефлекторным устройством; 2 -солнечно-ветровое устройство; 3 – ветроколесо с

турбиной Вентури; 4 – ветроколесо с вихревым

В настоящее время в мировом парке эксплуатируемых ВЭУ горизонтально-осевые (пропеллерные) установки составляют более 90 %, а их изготовлением занимаются несколько тысяч предприятий. Отставание в освоении вертикально-осевых ВЭУ вызвано несколькими причинами. Вертикальноосевые ВЭУ были изобретены позднее пропеллерных (ротор Савониуса – в 1929 г., ротор Дарье – в 1931 г., ротор Макгроува – в 1975 г.). Кроме того, до недавнего времени главным недостатком вертикально-осевых ВЭУ ошибочно считалось то, что для них невозможно получить отношение максимальной линейной скорости рабочих органов (лопастей) к скорости ветра больше единицы (для пропеллерных ВЭУ это отношение достигает 5:1).




Рис. 12.4. Ветродвигатель (ротор) системы Дарье: 1 — лопасти; 2 — вал; 3 — растяжка; 4 — опора; 5 — привод

Сравнительные характеристики ВЭУ различных типов

Характеристики	NEWECS-45	ВТО-1250Б	Д. де Рензо
Установленная мощность, МВт	1	1,25	1,5
Расчетная скорость ветра, м/с	14,1	20	11,5
Характеристики	NEWECS-45	ВТО-1250Б	Д. де Рензс
Массовые характеристики, кг:			
 ветроколесо, в том числе; 	_	40 000	17 430
лопасть	3000	4000	2580
втулка (ступица)	19 000	8000	12 270
траверса		16 000	(-
 система передачи момента, в том числе; 	21	16 000	35 180
редуктор	2000	10 000	20 860
прочее	_	6000	14 320
 электрическая система, в том числе; 	-	10 000	-
генератор	3000	5000	6950
• опорная башня	70 000	70 000	69 360
• прочие системы	_	6000	_
Общая масса, кг	142 000	136 000	128 940

Тихоходные вертикально-осевые ВЭУ с точки зрения воздействия на окружающую среду имеют преимущества перед быстроходными горизонтально-осевыми пропеллерными: при их работе ниже все уровни аэродинамических и инфрашумов, вибрации, меньше теле и радиопомехи, меньше радиус разброса обломков лопастей в случае их разрушения, ниже вероятность столкновения лопастей с птицами.

Кроме горизонтально-осевых и вертикально-осевых разработаны и действуют так называемые циклонные (вихревые) ВЭУ мощностью до 100 тыс. кВт. В этих установках теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный «циклон». который врашает турбину.

Рис. 12.5. Вихревое устройство башенного типа, действующее при любом направлении ветра:

- 1 регулируемые вертикальные лопатки;
- 2-лопатки закрыты;
- 3 трос, прикрепленный к неподвижному якорю (растяжка);
- 4 неподвижная опорнонаправляющая конструкция;
- 5 маховик;
- 6 передача к генератору;
- 7-подшипник;
- 8 выходное сечение турбины;
- 9 лопасти ветроколеса

Для проведения надежных энергетических и техникоэкономических расчетов по использованию энергии ветра, режимам работы ВЭУ, их производительности и ожидаемой выработке электроэнергии необходимы сведения о повторяемости скоростей ветра в заданной зоне, их хронологическом ходе и ряд других характеристик. Для этих целей составляется так называемый ветроэнергетический кадастр: совокупность объективно достоверных и необходимых количественных сведений, характеризующих ветер как источник энергии и позволяющих оценить его энергетическую ценность в той или иной местности.

Тестовые Вопросы

1. Потенциал энергии ветра в мире составляет в трлн. кВт*час в год:

- 1.1 80
- 1.2 100
- 1.3 120
- 1.4 170
- 2. Впервые энергия ветра была использована для:
 - 2.1 передвижения парусных судов
 - 2.2 для подъема воды
 - 2.3 для размола зерна
 - 2.4 для транспорта

3. Суммарная установленная мощность ВЭУ в мире в 2010 году, МВт:

- 3.1 75000
- 3.2 95000
- 3.3 140000
- 3.4 180000

4. Выдача энергии с ВЭУ отличается:

- 4.1 дешевизной
- 4.2 дороговизной
- 4.3 неравномерностью
- 4.4 высоким качеством

5. Аккумулирующие устройства в ВЭУ

- 5.1 Выравнивает пульсирующие мощности
- 5.2 Уменьшает время переходного процесса
- 5.3 Увеличивает мощность
- 5.4 Стабилизируют КПД