

АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

Преподователь:

Бекбаев А.Б., д-р. техн. наук, профессор кафедры «Энергетика»

bekbaev_a@mail.ru

АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

В Лекция №9

Экологические характеристики ВЭ

После завершения урока Вы будете знать:

 О вредных последствиях традиционной энергетики. Воздействие энергетики на окружающую среду. Об экологических характеристиках тепловой, атомной, гидро и других ВИЭ. Мировой энергетический кризис 1970-х годов впервые заставил человечество задуматься, насколько рационально расходуются ископаемые виды углеводородсодержащего топлива, прежде всего нефти, а также оценить запасы минеральных ресурсов. Тогда впервые были сформулированы основные цели энергетической политики Запада: снижение нефтяной зависимости экономики, замена нефти другими энергоносителями, развитие энергосберегающих технологий.

Экологические характеристики энергетики

Насколько актуально развитие энергосберегающих технологий, можно оценить на примере США. Специалисты подсчитали, что в США потребление энергии в 6 раз превосходит среднемировой уровень и в 30 раз – уровень развивающихся стран. В немалой степени это объясняется тем, что до недавнего времени там совершенно не были озабочены экономией энергоресурсов. Например, известно, что в США наибольшая концентрация тяжелых легковых автомобилей, потребляющих топлива в 2-3 раза больше, чем среднестатистический европейский или японский автомобиль, хотя функционально они равноценны. Ученые предлагают следующую информацию к размышлению. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня США, то разведанные запасы нефти истощились бы через 7 лет, природного газа – через 5 лет, угля – через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах – на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, – на 660 лет, угля – на 350 лет.

 Прошедшему веку было присвоено много эпитетов – это и век авиации, и век космоса, атомный век, компьютерный век и т.д. Но, пожалуй, ХХ век был в первую очередь веком нефти. Можно сказать, что наша цивилизация основана на нефти и ее судьба тесно связана с перспективами развития нефтяной промышленности. Благодаря широкому использованию продуктов переработки нефти стали возможными большинство других технических достижений минувшего века. Нефть широко используется для производства электроэнергии, как топливо для автомобилей самолетов и подавляющего большинства морского транспорта. Благодаря широкому использованию нефти стало возможным высокопродуктивное сельское хозяйство. Даже первый прорыв в космос, запуск первого искусственного спутника Земли был совершен с помощью ракеты-носителя на жидком топливе, одним из компонентов которого был продукт переработки нефти – керосин.

Теплотворная способность ископаемых видов топлива

Топливо	Теплотворная способность, ГДж
1 т каменного угля	30,5
1 т нефти	46,6
1000 м ³ природного газа	38,5
1 т бензина	47,0
1 т водорода	120,7

В настоящее время на энергетическом рынке доминирует нефть, на ее долю приходится более 40 % общего потребления, на долю угля — 28 %, газа — 23 %. Альтернативные источники энергии — энергия солнца, ветра, геотермальная энергия, энергия приливов и течений — пока вносят незначительный вклад в мировое производство энергии.

Три четверти разведанных запасов сырой нефти контролирует Организация стран — экспортеров нефти (ОПЕК). Неравномерное распределение мировых запасов ископаемого топлива и зависимость западных стран от ближневосточной нефти создают постоянную напряженность в экономике развитых и развивающихся стран.

В связи с изменяющейся динамикой потребления трудно точно рассчитать, на сколько лет еще хватит запасов нефти. Если существующие тенденции сохранятся, то годовое потребление нефти в мире к 2018 г. достигнет 3 млрд т. Даже допуская, что промышленные запасы существенно возрастут, геологи приходят к выводу, что к 2030 г. будет исчерпано 80 % разведанных мировых запасов нефти.

Запасы угля оценить легче (табл. 1.3). Три четверти его мировых запасов, составляющих по приближенной оценке 10 трлн т, приходятся на страны бывшего СССР, США и Китай.

Мировые запасы каменного угля (ориентировочные данные)

Регион	Запасы, млрд т
Страны СНГ	4400
США	1570
Китай	1570
Западная Европа	865
Океания	800
Африка	225
Азия (без стран СНГ и Китая)	185
Канада	65
Латинская Америка	60
Всего:	9740

Кроме того, по данным доклада Министерства энергетики США, в период до 2020 г. опережающими темпами будет расти потребление энергии в развивающихся странах: в развитых странах по этому прогнозу потребление энергии будет расти примерно на 1,3 %, в странах Восточной Европы и бывшего СССР – на 1,5 % в год, в развивающихся странах на 3,3 % в год. Это, в общем, понятно: экономическое развитие и рост жизненного уровня связан с увеличением потребления энергии на душу населения. Тот факт, что развитым странам удается удерживать его на постоянном уровне, связан не с «чудесами» энергосберегающих технологий, а с сильными тенденциями деиндустриализации, прежде всего с отказом от наиболее энергоемких производств у себя дома и переводом их в развивающиеся страны.

Энергетика является одной из наиболее крупномасштабных отраслей промышленного производства, основой развития всех других отраслей промышленности, определяющих прогресс в целом.

Учитывая, что из всех источников энергии самым удобным в использовании является электроэнергия, прогноз электропотребления является основой прогноза развития всей экономики в целом. Как видно из табл. 1.4, на 2001–2020 гг. прогнозируется среднегодовой темп конечного мирового потребления электроэнергии 2,6 %; для промышленно развитых стран этот показатель составляет 1,7 %, а для развивающихся стран – 4,2 %. Особенно быстрый рост потребления электроэнергии ожидается в Китае.

Динамика мирового потребления электроэнергии, млрд кВт-ч

	1990 г. факт	2000 г. факт	2010 г. прогноз	2020 г. прогноз	Среднегодовой темп прироста в 2001–2020 гг., %
Промышленно разви- тые страны, в том числе:	6385	7550	9150	10 600	1,7
США	2817	3340	4050	4770	1,8
Канада	438	516	620	690	1,45
Великобритания	287	331	395	440	1,45
Германия	489	498	610	695	1,7
Франция	326	409	490	570	1,65
Япония	765	948	1090	1240	1,35
Развивающиеся стра- ны в целом	2258	4010	6170	9130	4,2
Китай	551	1160	2035	3330	5,4
	1990 г. факт	2000 г. факт	2010 г. прогноз	2020 г. прогноз	Среднегодовой темп прироста в 2001—2020 гг., %
Россия	1027	842	985	1225	1,9
Мир в целом	10 549	12 930	16 990	21 670	2,6

- В 2020 г. наиболее высокий коэффициент опережения потребления электроэнергии по отношению к потреблению первичных энергоресурсов прогнозируется в странах Африки (1,2 раза) и в Китае (1,3 раза). В промышленно развитых странах в целом этот коэффициент составит 1,1. Примерно такая же величина коэффициента опережения ожидается в России (1,14). Это показывает, что использование электроэнергии более перспективно, чем потребление первичных энергоресурсов, то есть ожидается дальнейший рост электрификации мировой экономики.
- При сжигании топлива реализуется первичная (тепловая) энергия, которая может быть преобразована в электрическую с определенным коэффициентом полезного действия (к.п.д.): 40-44 % на тепловых электростанциях (ТЭС), где сжигается углеродосодержащее топливо (до 60% на парогазовых установках ПГУ), и 30-33 % на атомных электростанциях (АЭС).

В энергетике перечисленные глобальные проблемы усугубляются последствиями не вполне продуманных реформ, в результате которых, в частности, нарушены производственные связи между подразделениями внутри электростанций, а также между электростанциями и сервисными (ремонтными) предприятиями. Введение обязательного проведения тендеров для выбора подрядных организаций при проведении ремонтных работ фактически уничтожило многие специализированные ремонтные организации, потеряны квалифицированные специалисты, методики, технологии. Во-первых, тендеры проводятся в условиях, когда на рынке нет избыточности предложения от компаний, имеющих инженерные службы и опытных специалистов. Во-вторых, критерий минимальных цен при организации тендеров на ремонт устаревшего оборудования привлекает в отрасль случайных подрядчиков, не имеющих опыта работы и не заинтересованных в качестве выполняемых робот. В-третьих, в электроэнергетике важно знать историю предыдущих ремонтов, что практически невозможно обеспечить при смене подрядчиков.

квалифицированный шеф-персонал нужен не только во время плановых ремонтных работ, но и при контроле текущего состояния оборудования. Приглашение случайных подрядчиков и ангажированных посредников не способствует повышению надежности энергетического оборудования.

Отрицательно сказывается и еще одно обстоятельство. В соответствии с концепцией реформ в энергетике все активы энергокомпаний были разделены по видам деятельности: ремонтники, специалисты по релейной защите и автоматике, связисты, подразделения автотранспорта и даже уборщицы были выведены за штат энергопредприятий и превратились в подрядчиков, обслуживающих электростанцию или иной объект.

Тендеры во многих случаях превратились в формальность, а демпинговые цены, предлагаемые вновь созданными фирмами, способствовали вытеснению с рынка услуг в энергетике многих профессиональных ремонтных организаций, игравших важную роль в обеспечении надежности энергетического оборудования. В результате в последние годы самоликвидировались такие мощные региональные структуры, как Ростовэнергоремонт, Мосэнергоремонт, Уралэнергоремонт, Сибирьэнергоремонт, Дальэнергоремонт и др. Иногда функции заказчика, исполнителя, а также контроль и приемка из ремонта осуществляются фактически одними и теми же лицами. Как результат в последние годы ухудшилось качество выполняемых ремонтных работ, участились случаи аварийных остановов оборудования вскоре после завершения ремонта.

В этот же ряд следует поставить и фактическую ликвидацию специализированных научно-исследовательских и проектных организаций, а также повсеместную замену специалистов в руководстве энергетических компаний финансовым менеджментом, озабоченным лишь немедленным получением прибыли; при этом перспективы развития отрасли, гарантии надежности и качества электроснабжения зачастую существуют лишь на уровне риторики.

Поэтому в отечественной энергетике наряду с внедрением инновационных решений, развитием альтернативных источников энергии не менее важно восстановить утраченные приоритеты, что также потребует и времени, и значительных средств.

Рассмотрим экологические характеристики энергетики, основанной на сжигании углеводородных видов топлива (тепловой энергетики), атомной энергетики и гидроэнергетики.

Воздействие систем производства, передачи и использования энергии на окружающую среду проявляется в таких процессах и явлениях, как:

- изъятие территорий для добычи топлива, размещения электростанций и линий электропередачи, захоронения отходов;
- загрязнение атмосферы и литосферы продуктами сгорания (выбросы в атмосферу, шлаки, радиоактивные отходы и т. п.);
- тепловое (термическое) загрязнение сброс тепловой энергии электростанций в окружающую среду и повышение температуры среды;
- электромагнитное загрязнение образование электрических, магнитных и электромагнитных полей, создающих угрозу для человека и биосферы;
 - радиоактивное загрязнение;
- затопление полезных территорий водохранилищами гидроэлектростанций (ГЭС);
 - воздействие на климат;
 - воздействие на флору и фауну;
- «наведенная» сейсмичность возникновение землетрясений при создании энергоустановок, в первую очередь гидроэлектростанций.

На типичной ТЭС происходит сжигание углеводородных видов топлива и под действием этого тепла в котле образуется пар с температурой 600 °C и более, который и приводит во вращение турбину турбоагрегата. Пар после турбины поступает в конденсатор-теплообменник, где охлаждается проточной водой, превращается в воду, которая затем насосами снова направляется в котел. Необходимость использования проточной воды, которая при охлаждении и конденсации пара нагревается, приводит к тепловому загрязнению окружающей среды. Кроме того, создание, передача и использование электроэнергии ведут к электромагнитному загрязнению. Сжигание углеродосодержащих топлив приводит к образованию двуокиси углерода СО2, которая выбрасывается в атмосферу и способствует созданию парникового эффекта. Наличие в сжигаемом угле добавок серы обусловливает появление окислов серы, поступающих в атмосферу и после реакции с парами воды создающих серную кислоту, которая с осадками выпадает на землю («кислотные дожди»). Другим источником кислотных осадков являются окислы азота, которые возникают в топках котлов ТЭС при высоких температурах (при обычных температурах азот не взаимодействует с кислородом атмосферы). Далее эти окислы поступают в атмосферу, вступают в реакцию с парами воды и создают азотную кислоту, которая также вместе с осадками попадает на землю.

Экологические характеристики атомной энергетики

В энергетике многих стран (Франция, Япония, США) атомная энергетика играет очень важную роль. На наиболее распространенных АЭС с реакторами на тепловых нейтронах через реактор, в котором находятся тепловыделяющие элементы (ТВЭЛ) с обогащенным ураном, протекает теплоноситель, чаще всего обычная или тяжелая вода. В результате распада атомов U²³⁵ под действием тепловых нейтронов в ТВЭЛ происходит выделение тепловой энергии и температура охлаждающей воды (теплоносителя) повышается. Далее нагретая вода поступает в парогенератор, где образуется пар, подаваемый на турбину. Пар после турбины охлаждается в конденсаторе-теплообменнике и снова поступает на охлаждение ТВЭЛ и парогенератор.

Чтобы представить себе габариты и параметры реактора, приведем данные для реактора ВВЭР Нововоронежской АЭС. Реактор имеет диаметр 4,6 м и высоту 11 м. Масса корпуса — 304 т. Масса урана в активной зоне — 66 т. Толщина стенок корпуса для обеспечения биологической защиты — 12 см. В качестве теплоносителя используется дистиллированная вода, которая прокачивается через реактор под давлением 100 атм. Вода поступает в реактор при температуре 269 °С и покидает его при температуре 300 °С, нагреваясь на 31 °С. Для управления мощностью в активную зону реактора вводятся графитовые стержни. В парогенераторе образуется пар под давлением 47 атм.

Использование на АЭС ядерного топлива не сопровождается образованием двуокиси углерода CO_2 , а также не создает окислов серы и азота, приводящих к кислотным осадкам. Учитывая теплотворную способность, эксплуатация действующих АЭС всего мира позволяет экономить около 400 млн т нефти ежегодно.

Однако в расчете на единицу производимой электроэнергии АЭС сбрасывают в окружающую среду больше тепла, чем ТЭС аналогичной мощности.

Тепловое загрязнение окружающей среды АЭС и ТЭС может быть весьма значительным. Например, в Германии рассматривался перспективный план строительства 15 АЭС и 8 ТЭС в бассейне Рейна; однако выяснилось, что когда в действие вступят все станции, температура в ряде притоков Рейна поднимется до 45 °С и всякая жизнь в них будет уничтожена.

С целью повышения безопасности АЭС академик А. Д. Сахаров предлагал строить их под землей, подсчитав, что удорожание строительства не превысит 20 %. Во Франции разрабатываются безопасные реакторы с двумя защитными оболочками. Внутренняя рассчитана на давление теплоносителя, возникающее при разрушении корпуса реактора, удержание продуктов деления и ядерного топлива. Наружная предохраняет реактор от внешних воздействий (падения самолета, террористического акта и т. п.).

Экологические характеристики гидроэнергетики

Большинство людей, имеющих некоторые познания в энергетике, считают ГЭС наиболее надежными и в экологическом отношении нейтральными, а в целом — более безопасными, чем другие традиционные виды энергетики. Однако это слишком оптимистичное мнение.

Действительно, гидроэнергетика экологически более нейтральна в сравнении с ТЭС и АЭС. Однако и работа ГЭС имеет ряд экологических особенностей:

- затопление земель, изымаемых из хозяйственного оборота;
- изменение климата в зонах водохранилищ;
- нарушение условий существования и нереста рыбы, сокращение рыбных запасов;
- разрушение плотины ГЭС при военных действиях может привести к катастрофическому спуску воды из водохранилища, возникновению волны высотой в десятки метров, которая может уничтожить города, расположенные в долине реки ниже ГЭС;
- строительство водохранилищ ГЭС может привести к наведенной сейсмичности.

В 1936 г. в районе плотины Гувер (США), через год после заполнения водохранилища произошло сильное землетрясение магнитудой 6,1 балла по шкале Рихтера, хотя ранее в этом районе землетрясений не было. Наблюдения, проведенные в США, показали, что 10 водохранилищ из 68 вызвали наведенную сейсмичность. А общемировая статистика говорит о том, что из всех плотин высотой от 90 м и выше 21 % вызывает наведенную сейсмичность.

До заполнения водохранилища Нурекской ГЭС землетрясения разной интенсивности в районе случались 3—4 раза в декаду. При заполнении водохранилища в 1972 г. сейсмическая активность резко повысилась: в радиусе 5 км число слабых землетрясений увеличилось в несколько раз, а когда уровень воды повысился до 100 м, их число возросло более чем в десять раз (30—40 толчков в декаду); увеличилось их число и в зоне до 15 км от водохранилища.

До заполнения водохранилища Шиваджисагар на реке Койна в Индии в 1962 г. данных о сейсмической активности этого района не было — полуостров Индостан считался асейсмической областью. С началом заполнения в районе водохранилища стали ощущаться толчки средней силы (магнитуда 3—4 балла). Все это сопровождалось звуками, похожими на взрывы, интенсивность и частота которых, особенно вблизи плотины, постепенно усиливались. Наконец, 10 октября 1967 г. произошло землетрясение с магнитудой, по данным различных источников, от 5,9 до 7,0 баллов. В результате этого землетрясения 200 человек погибло, более 1,5 тыс. было ранено и несколько тысяч человек, в основном жители поселка Койнангар, остались без крова, так как почти все дома были разрушены. Пострадала и плотина. В последующем толчки меньшей силы (афтершоки) продолжались и эпицентры их концентрировались по-прежнему в районе плотины.

В этом же ряду можно назвать землетрясения с толчками 7—8 баллов, произошедшие во время заполнения водохранилищ Кариба на реке Замбези (Замбия—Зимбабве) и Кренеста (Греция). Эти землетрясения также привели к трагическим последствиям — значительным разрушениям, повреждению плотин и человеческим жертвам.

Таблица 1.5

Наименование ГЭС	Мощ- ность, ГВт	Среднегодовая выработка, млрд кВт•ч	Расположение
Санься (Три ущелья)	22,4	100	р. Янцзы, г. Сандоупин, Китай
Итайпу	14	100	р. Парана, г. Фос-ду-Игуасу, Бразилия — Парагвай
Гури	10,3	40	р. Карони, Венесуэла
Тукуруи	8,3	21	р. Токантинс, Бразилия
Гранд-Кули	6,8	_	США
Саяно-Шушенская	6,4	23,5	Россия
Красноярская	6,0	20,40	Россия
Братская	4,52	22,60	Россия
Усть-Илимская	3,84	21,7	Россия
Богучанская (строится)	3,0	17,6	Россия

Резюмируя сказанное, проблемы энергетики можно кратко сформулировать следующим образом:

- Необходимость роста генерирующих мощностей в соответствии с ростом потребления.
- Усугубление экологических проблем при возрастании количества электростанций и их мощности.
- Снижение запасов и прогнозируемое исчерпание ископаемых углеводородных видов топлива, увеличение стоимости их добычи. Необходимость перехода на альтернативные виды топлива.
- Высокие издержки при организации обеспечения энергией (тепловой и электрической) удаленных регионов.

Необходимость учета рассмотренных факторов определяет перспективные направления развития мировой энергетики:

- Рационализация и инновационное развитие существующей традиционной энергетики. Рациональное использование энергии.
 - 2. Развитие малой энергетики.
 - 3. Широкое использование ВИЭ.
- Создание и развитие постнефтяной альтернативной энергетики (термоядерной и водородной).

Тестовые вопросы

1.1 1.2 1.3 1.4 2. 2.1 2.2 2.3

2.4

3. 3.1 3.2 3.3 3.4 4. 4.14.2 4.3 4.4 5. 5.1 5.2 5.3 5.4