

Курс: «Электрические annapamы»

Лекция №4 Контактные явления в электрических аппаратах

Преподаватель: Сарсенбаев Е.А., ассоц.проф. кафедры «Энергетика»

y.sarsenbayev@satbayev.university

Алматы 2025

Содержание

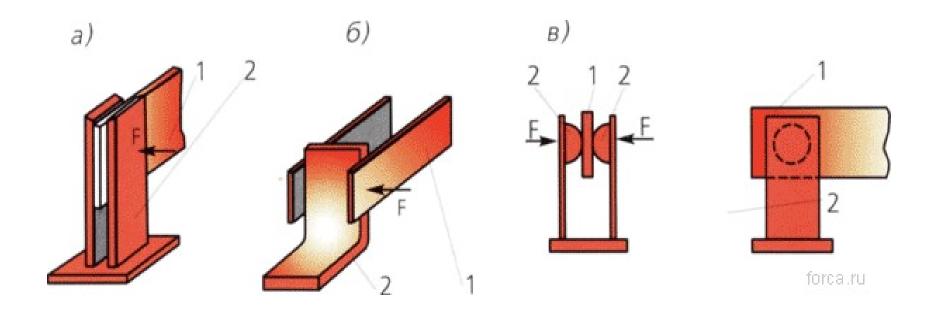
- 1. Введение
- 2. Контактные явления в электрических аппаратах
- 3. Материалы контактов
- 4. Работа контактного соединения
- 5. Основные конструктивные исполнения контактных соединений

По завершению урока Вы будете знать:

- 1. Какие контакты существуют
- 2. Как классифицируются контакты
- 3. Что такое переходное сопротивление
- 4. Что влияет на износ контактов

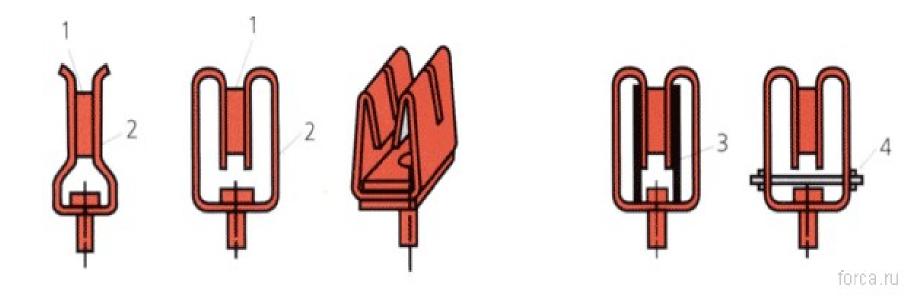
Введение

Контактная система является одной из наиболее существенных частей электроаппарата, от надежной работы которой существенно зависит работоспособность всего аппарата.

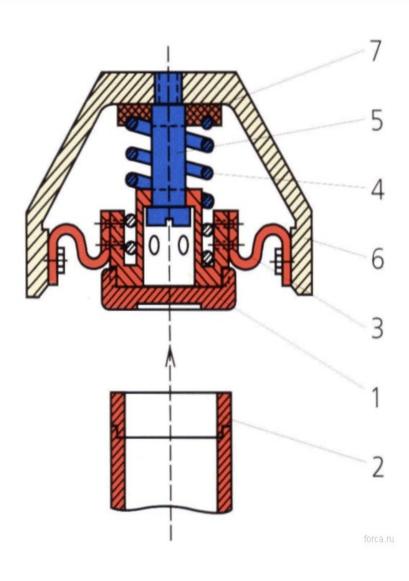

Электрический контакт — это сопротивление тел, обеспечивающее протекание тока в электрической цепи.

Конструктивный узел, с помощью которого в процессе работы аппарата производятся периодические замыкания и размыкания электрической цепи, называется электрическим контактным соединение.

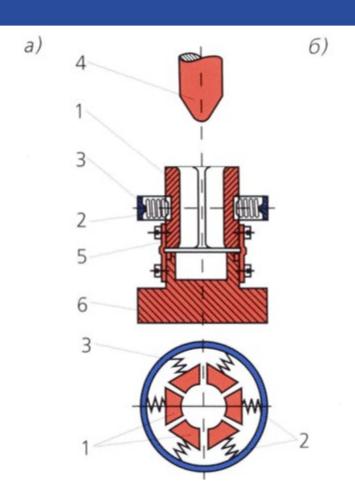
Контактное соединение состоит в большинстве случаев из подвижного и неподвижного элементов

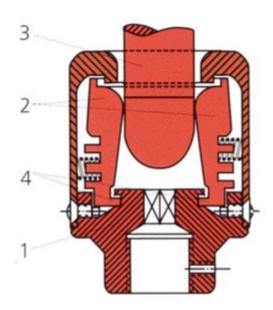

.

Типы электрических контактов

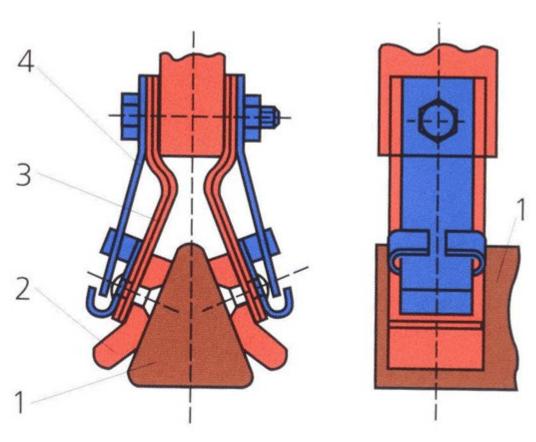

а - поверхностные; б - линейные; в - точечные; 1 - подвижный контакт; 2 - неподвижный контакт; F - сила нажатия контактов

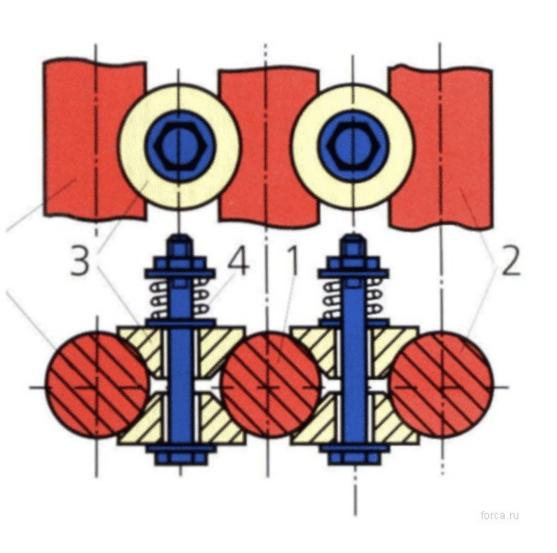
Виды контактов


- 1 подвижный контакт; 2 неподвижный контакт; 3 стальная пружина;
- 4 шпилька для регулирования нажатия

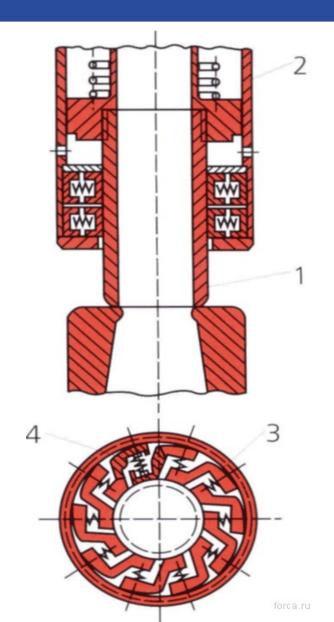

Виды контактов. Торцевой контакт

1 - неподвижный контакт; 2 - подвижный контакт; 3 - гибкая связь; 4 - пружина; 5 - направляющий стержень; 6 - корпус; 7 - изолирующий колпачок


Виды контактов. Розеточные контакты


а - с гибкой связью; 1 - контактные сегменты; 2 - пружины; 3 - упорное кольцо; 4 - подвижный контакт; 5 - гибкая связь; 6 - контактодержатель 6 - без гибких связей; 1 - контактодержатель; 2 - контактные сегменты; 3 - подвижный контакт; 4 - контактные выступы

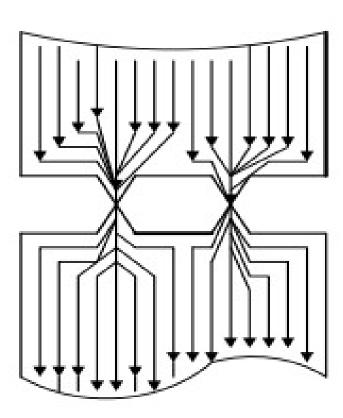
Виды контактов. Пальцевые контакты


1 - подвижный контакт; 2 - неподвижные контакты (латунные пальцы); 3 - гибкие токоведущие пластины; 4 - плоские стальные пружины

Виды контактов. Неразмыкаемые роликовые контакты

1 - контактный стержень; 2 - неподвижные стержни; 3 - ролики; 4 — пружины

Виды контактов. Скользящие неразмыкаемые контакты



- 1 подвижный контакт; 2 латунный стакан;
- 3 соединительные пластины; 4 пружины

Модель контактов

Все контактные соединения должны удовлетворять требованиям:

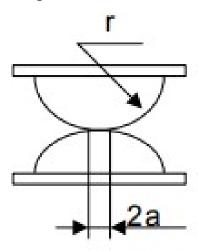
- Надежности
- Механической прочности
- Термической и электродинамической устойчивости
- Стойкости против влияния внешней окружающей среды

В месте перехода тока из одного проводника в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта.

$$R_{cr} = \frac{\rho}{2an}$$

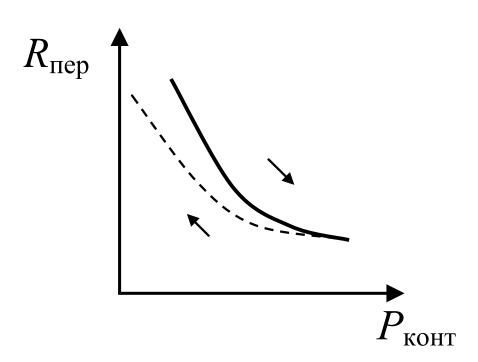
где p— удельное сопротивление материала контактов, Ом. м; a — радиус площадки фактического касания, м; n — число точек касания.

Радиус фактического касания) зависит от вида деформации материала контактов. При упругой деформации радиус площадки определяется формулой:


$$a=0.86\cdot\sqrt[3]{\frac{F_{\kappa}\cdot r}{E}},$$

где Fк – контактное нажатие, H; E – модуль упругости материала, H/м

При пластической деформации радиус площадки определяется формулой:.


$$a = \sqrt{\frac{F_{\kappa}}{\pi \cdot n \cdot \sigma_{cM}}},$$

где осм – предел прочности материала контактов на смятие, Н/м2.

Площадка касания

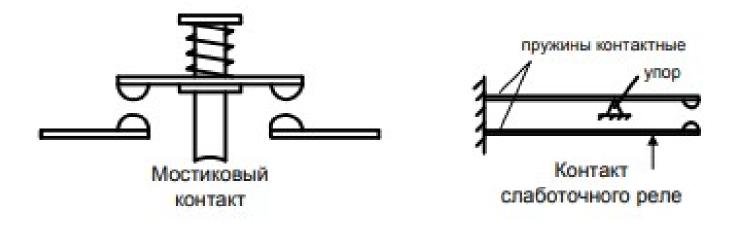
Как видно из приведенного графика с ростом контактного нажатия $P_{\text{конт}}$ переходное сопротивление уменьшается. При многократных замыканиях и размыканиях контактов кривые не повторяют друг друга, так как в каждом случае касание происходит в различных точках.

Таким образом, переходное сопротивление контакта можно представить следующим выражением:

$$R_{\kappa} = R_{M} + R_{nepex}$$

влияние материала контакта влияние температуры Факторы влияющие на величину переходного влияние величины и сопротивления состояния контактной поверхности влияние силы нажатия

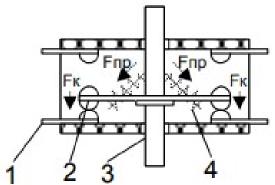
Величина напряжения смятия σ при смятии материала от прижатия поверхностей контактов S внешней силой F зависит от твердости используемого материала $\sigma = \frac{F}{C}$


Энергия, выделяющаяся при прохождении тока через контактные элементы, частично превращается в тепловую, нагревая их в процессе работы и рассеиваясь в окружающую среду.

Размеры контактной поверхности мало влияет на контактное сопротивление, так как одновременно с увеличением числа точек действительного соприкосновения уменьшаются нажатие на единицу поверхности и ее смятия.

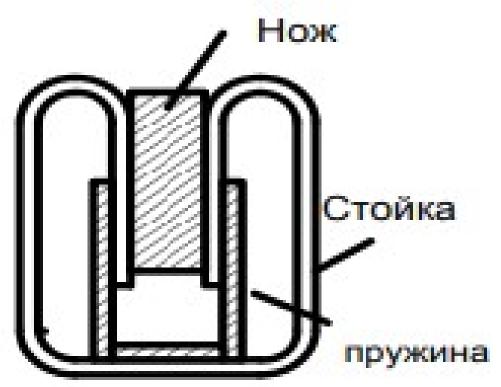
В области малых усилий на контакт наблюдается резкое увеличение переходного сопротивления.

Конструкции контактов


Конструкция размыкаемых контактов определяется значениями номинального тока, номинального напряжения, тока короткого замыкания, режимом работы, назначением аппарата.

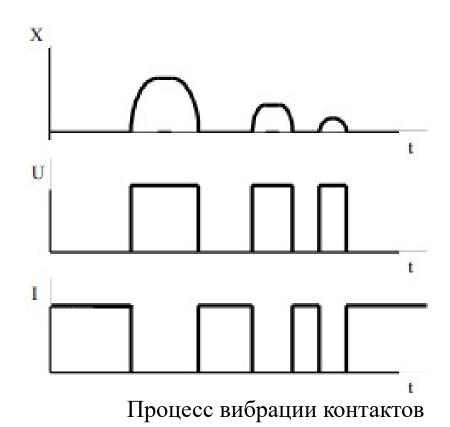
Контакты, показанные на рис. выполнены в виде консольно закрепленных плоских пружин с контактными напайками, образующими точечный контакт. Контактное нажатие создается реакцией пружин при изгибе. Такие контакты находят применение в слаботочных реле, расчитанных на токи не более 10 А.

Конструкции контактов


В реле широко применяются контакты спускного действия, конструкция которых приведена на рис. Между двумя парами неподвижных контактов 1 помещен контактный мостик 2, установленный на траверсе 3. На мостик действуют две предварительно сжатые пружины 4, которые прижимают мостик к неподвижным контактам

При движении траверсы вниз пружины сжимаются и контактное нажатие Fк увеличивается. При переходе точки закрепления пружин на траверсе через мостик направление действия сил Fпр, создаваемых пружинами, меняется на противоположное и мостик скачком перемещается вверх, замыкая другую пару неподвижных контактов.

Конструкции контактов


В силовых электрических аппаратах, например, в аппаратах распределительных устройств (рубильники, предохранители и др.) применяется врубной контакт (на рис). Такой контакт состоит из неподвижного (стойка), подвижного (нож) контактов и пружины. Это самоочищающийся контакт, так как после каждого замыкания и размыкания окисная пленка стирается на соприкасающихся поверхностях.

Режимы работы контактов

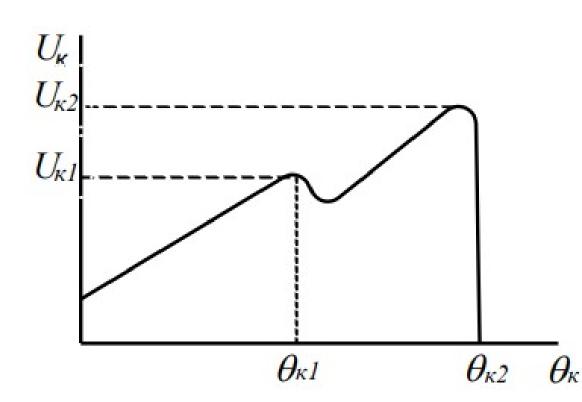
При коммутации электрической цепи работу контактов можно разделить на следующие режимы: режим замыкания, режим замкнутого состояния и режим размыкания.

Режим замыкания. В этом режиме возможны следующие процессы: 1) вибрация контактов, 2) эрозия контактов.

Режимы работы контактов

При коротком замыкании через контакты проходят токи в 10...20 раз превышающие номинальные значения. Из-за малой постоянной времени нагрева температура контактной площадки практически мгновенно повышается и может достигнуть темпера туры плавления. Это может привести к свариванию контактов.

$$I_{\kappa}R_{n} < U_{\kappa\partial on} = (0.5 - 0.8) U_{\kappa I}$$
.


Для надежной работы контактов необходимо, чтобы при номинальном токе Ін падение напряжения на переходном сопротивлении было меньше допустимого Ін $R\pi < U$ кдоп = (0.5 - 0.8) Uк1 .

Режимы работы контактов

Режим замкнутого состояния. В этом режиме возможны два случая:

- 1) через контакты проходит длительное время номинальный ток;
- 2) через контакты проходит ток короткого замыкания. При коротком замыкании через контакты проходят токи в 10...20 раз превышающие номинальные значения.

Из-за малой постоянной времени нагрева температура контактной площадки практически мгновенно повышается и может достигнуть темпера туры плавления. Это может привести к свариванию контактов.

Зависимость падения напряжения на контакте от температуры

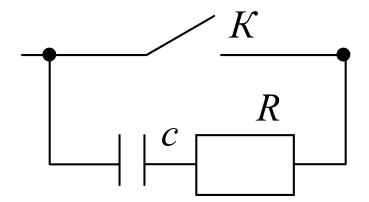
Режим размыкания контактов

При длительном номинальном переходном токе на сопротивлении контакта выделяется мощность, которая вызывает нагрев контакта. Это приводит К размягчению плавлению материала контактов. Поэтому, контакт характеризуется двумя точками точкой размягчения (рекристаллизации) параметрами Uк1 и θк1(Uк1 $\theta \kappa 1$ напряжения, падение температура) и точка плавления с параметрами Uк2 и θ к2, значение которых приведено в таблице.

Материал	$U_{\kappa I}$,B	$\theta_{\kappa I}$,°C	$U_{\kappa 2}$,B	$\theta_{\kappa 2}$,°C
медь	0.12	190	0.43	1083
серебро	0.09	150	0.35	960
алюминий	0.10	150	0.30	658
вольфрам	0.40	1000	1.00	3370

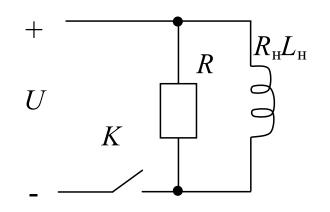
Износ контактов

При коротком замыкании через контакты проходят токи в 10...20 раз превышающие номинальные значения. Из-за малой постоянной времени нагрева температура контактной площадки практически мгновенно повышается и может достигнуть темпера туры плавления. Это может привести к свариванию контактов.


Пограничные значения I0 и U0 различных материалов контактов.

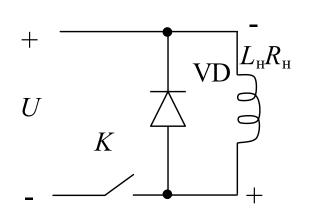
U_o , B	I_o , A
12.0	0.40
15.0	0.38
12.3	0.43
17.0	0.90
	12.0 15.0 12.3

Износ контактов


Перенос материала с анода на катод называют положительной эрозией, перенос в обратную сторону – отрицательной.

Более твердые металлы менее подтверждены электрическому износу. Для предохранения контактов от эрозии контакты *шунтируют емкостью*

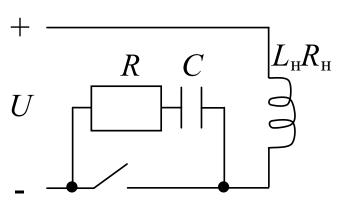
Явление эрозии сказывается более явно при увеличении индуктивности цепи.


Возможные схемы для уменьшения износа контактов

- -Электромагнитная энергия
- переходит в тепловую, выделяємую в шунтирующем сопротивлении R

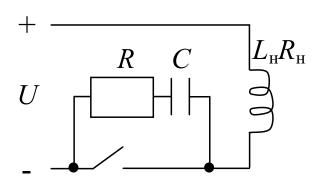
$$R \le \left(\frac{300}{U} - 1\right) R_{\rm H}$$

- *недостаток* — увеличение токовой нагрузки на контакт.



-Резистор R заменен на диод VD. Это приводит к тому, что контакт нагружается только номинальным током и обратным током диода. При отключении контакта поток в магнитной цепи нагрузки спадает и на индуктивности L появляется Э.Д.С.

$$e = -W \frac{dW}{dt}$$
 самоиндукции с указанной


-полярностью. При этом нагрузка шунтируется диодом и вся энергия выделяется в Rн и диоде. $K\Pi Д$ повышается.

- В начальный момент наличие конденсатора C уменьшает ток, протекающий через контакт. Он снижает скорость нарастания напряжения на контактах. Это облегчает процесс отключения.

$$C = 0.5-2$$
 мкФ $R = 100-500$ Ом.

- Шунтирующий контакт К1 резистор R облегчает гашение электродуги и уменьшает электроизнос. Вначале размыкается К1, а затем К2. Чем меньше R, тем быстрее гаснет дуга, но при этом К2 нагружается большим током.

Износ контактов

Основными средствами борьбы с эрозией в аппаратах на токи от 1 до 600 А являются:

- 1) сокращение длительности горения дуги за счет применения дугогасительных устройств;
- 2) устранение вибрации при включении;
- 3) применение дугостойких контактных материалов.

