Information Communication Technologies

Lecture 11. Network Systems

Kassymova Aizhan Bakhytzhanovna PhD, Associate professor a.kassymova@satbayev.university

Agenda

- 1. Local and Wide Area Networks
- 2. Communication Strategies
- 3. Client-Server Framework
- 4. Peer-to-Peer Networking
- 5. Data Transfer Technologies

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent
- ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware, software

Organization of air travel

• a series of steps

Layering of airline functionality

ticket (purchase)		ticket (complain)	ticket
baggage (check)		baggage (claim	baggage
gates (load)		gates (unload)	gate
runway (takeoff)		runway (land)	takeoff/landing
airplane routing	airplane routing airplane routing	airplane routing	airplane routing
departure airport	intermediate air-traffic control centers	arrival airport	

airport

layers: each layer implements a service

airport

- via its own internal-layer actions
- relying on services provided by layer below

Why layering?

dealing with complex systems:

- explicit structure allows identification, relationship of complex system's pieces
 - layered reference model for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system
 - e.g., change in gate procedure doesn't affect rest of system

Internet protocol stack

- *application:* supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.111 (WiFi), PPP
- physical: bits "on the wire"

application	
transport	
network	
link	
physical	

ISO/OSI reference model

- presentation: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions
- session: synchronization, checkpointing, recovery of data exchange
- Internet stack "missing" these layers!
 - these services, *if needed*, must be implemented in application

Two key network-core functions

routing: determines sourcedestination route taken by packets

forwarding: move packets from

dest address in arriving packet's header

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software

Adaptors communicating

- sending side:
 - encapsulates datagram in frame
 - adds error checking bits, rdt, flow control, etc.
- receiving side
 - looks for errors, flow control, etc
 - extracts datagram, passes to upper layer at receiving side

Internet transport protocols services

TCP service:

- reliable transport between sending and receiving process
- *flow control*: sender won't overwhelm receiver
- congestion control: throttle sender when network overloaded
- does not provide: timing, minimum throughput guarantee, security
- connection-oriented: setup required between client and server processes

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide: reliability, flow control, congestion control, timing, throughput guarantee, security, orconnection setup,

Some network apps

- e-mail
- web
- text messaging
- remote login
- P2P file sharing
- multi-user network games
- streaming stored video (YouTube, Hulu, Netflix)

- voice over IP (e.g., Skype)
- real-time video conferencing
- social networking
- search
- ...
- •

	application	application layer protocol	underlying transport protocol
	e-mail	SMTP [RFC 2821]	TCP
remote ⁻	terminal access	Telnet [RFC 854]	TCP
	Web	HTTP [RFC 2616]	TCP
	file transfer	FTP [RFC 959]	TCP
strean	ning multimedia	HTTP (e.g., YouTube), RTP [RFC 1889]	TCP or UDP
Int	ernet telephony	SIP, RTP, proprietary (e.g., Skype)	TCP or UDP

Creating a network app

write programs that:

- run on (different) end systems
- communicate over network
- e.g., web server software communicates with browser software
- no need to write software for network-core devices
- network-core devices do not run user applications
- applications on end systems allows for rapid app development, propagation

possible structure of applications:

- client-server
- peer-to-peer (P2P)

Client-server architecture

server:

- always-on host
- permanent IP address
- data centers for scaling

clients:

- communicate with server
- may be intermittently connected
- may have dynamic IP addresses
- do not communicate directly with each other

Network Servers

- Types of servers.
 A *file server* is a computer and storage device dedicated to storing files. Any user on the network can store files on the server.
 - Dedicated file server:
 Non-dedicated file server:

Dedicated file

- delivers programs and data files to workstations.
 - does not proces for workstations

Mary has Tenant Pro 7 Installed

Non-dedicated file server

- computer on a network that performs a dual role as both file server and workstation
 - also called *peer-to-peer* capability

Mary has Tenant Pro 7 Installed and Tenant Pro 7 Data file

Application Server

- Application server computer that runs a specific application software package
 - also referred to as client/server architecture
- An application server splits processing between the workstation (client) and the network (

Application Server

Print Server

- Print server: receives files from workstations and forwards them to a specific network printer
 - manages a print queue, a holding area for files waiting to be printed
 - A print line is a file that have been a set to a print been been a set to a print

Thin and Thick Clients

- Two terms used in client-server framework are *thin client* and *thick client*
 - Thin client does relatively little work (processing) typically providing little more than a user interface
 - Thick client carries out a substantial portion of the overall work of the system

P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers request service from other peers, provide service in return to other peers
 - self scalability new peers bring new service capacity, as well as new service demands
- peers are intermittently connected and change IP addresses
 - complex management

Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

examples:

- file distribution (BitTorrent)
- Streaming (KanKan)
- VoIP (Skype)

P2P file distribution: BitTorrent

file divided into 256Kb chunks

peers in torrent send/receive file chunks

Ethernet

"dominant" wired LAN technology:

- cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Enterprise access networks (Ethernet)

- typically used in companies, universities, etc
- I0 Mbps, I00Mbps, IGbps, I0Gbps transmission rates
- today, end systems typically connect into Ethernet switch

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active *switch* in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps
 - different physical layer media: fiber, cable

Wireless access networks

- shared wireless access network connects end system to router
 - via base station aka "access point"

wireless LANs:

- within building (100 ft)
- 802.11b/g (WiFi): 11, 54 Mbps transmission rate

to Internet

wide-area wireless access

- provided by telco (cellular) operator, 10's km
- between I and I0 Mbps
- 3G, 4G: LTE

Elements of a wireless network

Wireless, Mobile Networks

Elements of a wireless network

Wireless, Mobile Networks

Elements of a wireless network

Wireless, Mobile Networks

User-server state: cookies

many Web sites use cookies

four components:

- I) cookie header line of HTTP response message
- 2) cookie header line in next HTTP request message
- cookie file kept on user's host, managed by user's browser
- 4) back-end database at Web site

example:

- Susan always access Internet from PC
- visits specific e-commerce site for first time
- when initial HTTP requests arrives at site, site creates:
 - unique ID
 - entry in backend database for ID

Cookies: keeping "state" (cont.)

Cookies (continued)

what cookies can be used for:

- authorization
- shopping carts
- recommendations
- user session state (Web email)

cookies and privacy:

- cookies permit sites to learn a lot about you
- you may supply name and e-mail to sites

HTTP overview

- HTTP: hypertext transfer protocol
- Web's application layer protocol
- client/server model
 - client: browser that requests, receives, (using HTTP protocol) and "displays" Web objects
 - server: Web server sends (using HTTP protocol) objects in response to requests

iphone running Safari browser

Electronic mail

Three major components:

- user agents
- mail servers
- simple mail transfer protocol: SMTP

User Agent

- a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, Thunderbird, iPhone mail client
- outgoing, incoming messages stored on server

Electronic mail: mail servers

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - client: sending mail server
 - "server": receiving mail server

Electronic Mail: SMTP [RFC 2821]

- uses TCP to reliably transfer email message from client to server, port 25
- direct transfer: sending server to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure
- command/response interaction (like HTTP, FTP)
 - commands:ASCII text
 - response: status code and phrase
- messages must be in 7-bit ASCI

Scenario: Alice sends message to Bob

- I) Alice uses UA to compose message "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server; message placed in message queue
- 3) client side of SMTP opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Mail message format

- Body: the "message"
 - ASCII characters only

Cable Media

• Twisted Pair

- A type of cable that consists of two independently insulated wires twisted around one another. One wire carries the signal while the other wire is grounded and absorbs signal interferer
- UTP (unshielded twisted pair)
- STP (shielded twisted pair)
- Looks similar to telephone cable
- Uses square plastic RJ-45 connector

UTP vs STP

Cable Media (continued)

- Coaxial cable
 - A type of wire that consists of a center wire surrounded by insulation and then a grounded shield of braided wire. The shield minimizes electrical and radio frequency interference.
 - Resembles cable-TV cable
 - Uses round, silver BNC connector

Physical media: coax, fiber

coaxial cable:

- two concentric copper conductors
- bidirectional
- broadband:
 - multiple channels on cable

fiber optic cable:

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10's-100's Gpbs transmission rate)
- low error rate:
 - repeaters spaced far apart
 - immune to electromagnetic noise

Institutional network

Network Hub

- Cable from a workstation NIC connects to a network hub , a device that joins communication lines together .
- Hubs are commonly used to connect segments of a LAN .
- A hub contains multiple ports. When a packet arrives at one port, it is copied to the other ports so that all segments of the LAN can see all packets.

Interconnecting switches

• switches can be connected together

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine networklayer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

End of Lecture 11