Lecture_1 Course Introduction.
(Slide 1) Welcome to “Software architecture and design” course. I’m excited to have you in the class.
(Slide 2) Let me introduce myself. 	My name is Zhuldyz Beishenalievna Kalpeyeva.
(Slide 3) COURSE OVERVIEW	
You have already learned the basic software development tools, such as programming languages and data structure design, and, ideally, this course will introduce you to specific models and mechanisms of software engeering that will help you form a conceptual model of software architecture. It may give you your ideas such as quality attributes and architectural styles.
This course addresses challenges faced by software development organizations when developing large-scale software systems.
It became clear in the 1960s and 1970s that the effort required to produce quality software grew far faster than the size of the application.
Methods that worked for smaller applications did not scale well and many projects were never completed.
Those that were completed were usually delivered late and over-budget.
[bookmark: _GoBack]By the mid 1990s the field of software architecture had become a focus of research and by the early 2000s industry had begun to add the title of “Software Architect” to it’s software development roles.
This course lays a solid foundation upon which solutions for these much larger and more important applications may be built.
During the study of this course, students will
- Study large systems and how they were partitioned into subsystems and components, as well as how the structuring of these elements into a solution and the interfaces used to join them together facilitates communication and control.
- To explore with various notations and formalisms as they learn the relationship between these structures and key quality attributes and their impact on system implementation.
- Differences between detailed design and architecture are explored, as well as notations used for both.
- Several well-known architectural styles are evaluated.
- The use of various notations is explored, with a focus on UML, and the role of architecture and detailed design specifications are considered from the perspective of risk management.
(Slide 4) LEARNING OUTCOMES
After completing this course, you will be able to demonstrate the following knowledge, assessed through class discussions and assessments:
· The importance of taking a risk-based approach to software development.
· Why doing so aids an organization in determining how much architecture is enough for a given project.
· Given a requirements document, students will be able to identify risks and discuss how to mitigate them.
· How software architecture can be used to ensure quality goals will be met.
· Be able to discuss the purpose for creating different views of software architecture and be able to contribute to discussions in determining which are appropriate for a given project.
· Knowledgeably discuss architectural choices, the short-term and long-term consequences associated with each choice and the rationale for selecting one choice over the others.
· Discuss architecture styles and the relationship each has with various standard quality attributes and design patterns, as well as the advantages and disadvantages of their use.
· What encapsulation means and why it is important to preserve architectural integrity
· Describe how software architecture and design can be used during software maintenance as well as describing major issues involved.
· Students will also be able to identify the flow of a system solution, from requirements to quality attributes and architectural structures to design patterns and detailed design, to implementation, testing, integration, sustainment and future reengineering as required to extend a system’s life.
(Slide 5) You will also be able to demonstrate the following skills, generally assessed through project and task assignments:
· Use risk management processes, methods and techniques as the basis for deciding what to express and how best to express it, as well as what does not need documenting.
· Draft detailed design documents consistent with a specified architecture for moderate to small systems using UML design notations.
· To design module interfaces to support concurrent design and development by teams.
· Develop draft architecture documents for moderate to small systems employing one or more views.
· Use standard OO and other requirement notions to understand stakeholder requirements and express those.
· Demonstrate understanding design intent required to implement modules, subsystems and systems.
· Create views to capture and communicate key aspects of a design element for a specific and targeted audience
· Use architectural styles and design patterns.
· Use refactoring to improve code without changing its behavior.
(Slide 6) MATERIALS
· Online Resources & References
In addition to the textbook, several websites contain required readings. See the course syllabus for more detail. Additional online resources and references may be added as needed.
· Textbook
Just Enough Software Architecture: A Risk-Driven Approach by George Fairbanks, Marshall & Brainerd Publishers, 2010.
(Slide 7) All work in this class will be directed toward developing the architecture and design documents for development of a new software system. Your team will be in regular contact with your customer, and each week you will extend the architecture and/or revise previously created design diagrams and supporting documents as needed in response to customer discussions. Each team member will own responsibility for designing some parts of the system. Coordination between team members is achieved mostly through in-class meetings and in-class team exercises.
In general, the practical part of the course consists of 5 projects:
Project 01. Risk Assessment
Project 02. Initial Design
Project 03. Creating Models
Project 04. Patterns and Styles
Project 05. Using the Architecture

(Slide 7) Lecture 1. Introduction. Requirements Engineering. Basics of Use Cases.
This Lecture is devoted to a general introduction to software engineering.
The Objectives are:
- understand what software engineering is and why it is important
- understand the concepts of user and system requirements
- understand the differences between functional and non-functional
software requirements
· understand the basics of use-cases
(Slide 14) Let us start from definition What is software (SW)?
Many people think that software is simply another word for computer programs. However, when we are talking about software engineering, software is not just the programs themselves but also all associated documentation, libraries, support websites, and configuration data that are needed to make these programs useful. A professionally developed software system is often more than a single program. A system may consist of several separate programs and configuration files that are used to set up these programs. It may include system documentation, which describes the structure of the system, user documentation, which explains how to use the system, and websites for users to download recent product information.
(Slide 15) So, what about definition of Software engineering?
Software engineering is an engineering discipline that is concerned with all aspects of software production from the early stages of system specification through to maintaining the system after it has gone into use. In this definition, there are two key phrases:
1. Engineering discipline Engineers make things work. They apply theories, methods, and tools where these are appropriate. However, they use them selectively and always try to discover solutions to problems even when there are no applicable theories and methods. Engineers also recognize that they must work within organizational and financial constraints, and they must look for solutions within these constraints.
2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software development.
(Slide 17) Software engineering is important for two reasons:
· 1. More and more, individuals and society rely on advanced software systems. We need to be able to produce reliable and trustworthy systems economically and quickly.
· 2. It is usually cheaper, in the long run, to use software engineering methods and techniques for professional software systems rather than just write programs as a personal programming project. Failure to use software engineering method leads to higher costs for testing, quality assurance, and long-term maintenance.
(Slide 18) The systematic approach that is used in software engineering is sometimes called a software process. A software process is a sequence of activities that leads to the production of a software product.
 Four fundamental activities are common to all software processes.
1. Software requirements or specification, where customers and engineers define the software that is to be produced and the constraints on its operation.
2. Software development, where the software is designed and programmed.
3. Software validation, where the software is checked to ensure that it is what the customer requires.
 4. Software evolution, where the software is modified to reflect changing customer and market requirements.
(Slide 19) Let us move on and talk about SW (requirements) specification. Basic goal of requirements : To understand the problem as perceived by the user.
The requirements for a system are the descriptions of the services that a system should provide and the constraints on its operation.
The process of finding out, analyzing, documenting and checking these services and constraints is called requirements engineering (RE). Requirements engineering is usually presented as the first stage of the software engineering process.
Basically, it’s the process of determining and establishing the precise expectations of the customer about the proposed software system.
Aim to develop system to meet user needs
Capture user requirements through:
· Background reading/research
· Interviews with users/clients
· Observation of current practices
· Sampling of documents
· Questionnaires

(Slide 20) There are different levels of description of requirement from the user point and from the system point. User requirements to mean the high-level abstract requirements and system requirements to mean the detailed description of what the system should do. User requirements and system requirements may be defined as follows:
1. User requirements are statements, in a natural language plus diagrams, of what services the system is expected to provide to system users and the constraints under which it must operate.
2. System requirements are more detailed descriptions of the software system’s functions, services, and operational constraints. The system requirements document (sometimes called a functional specification) should define exactly what is to be implemented. It may be part of the contract between the system buyer and the software developers.
 (Slide 21) The Figure illustrates the distinction between user and system requirements. This example from the mental health care patient information system (Mentcare) shows how a user requirement may be expanded into several system requirements. You can see from Figure that the user requirement is quite general. The system requirements provide more specific information about the services and functions of the system that is to be implemented.
(Slide 22) Functional and non-functional requirements. Software system requirements are often classified as functional or non-functional requirements:
1. Functional requirements These are statements of services the system should provide, how the system should react to particular inputs, and how the system should behave in particular situations. In some cases, the functional requirements may also explicitly state what the system should not do.
 2. Non-functional requirements These are constraints on the services or functions offered by the system. They include timing constraints, constraints on the development process, and constraints imposed by standards. Non-functional requirements often apply to the system as a whole rather than individual system features or services.
 (Slide 23) Basics of Use Cases
When modeling requirements a use case diagram can be used to model the context of your system, indicating the major external entities that your system interacts with. let us call attention to what is Use case?
Use case diagrams are part of the Unified Modeling Language.
Use cases concisely describe required functionality including quality related information.
· Use cases answer to question What system does, not how
· Focuse on functionality from users’ perspective
· not appropriate for non-functional requirements
Use cases help developers clarify requirements because they provide view of the system from perspective of users – not software developers – so provide a kind of bridge between the customer and the developers.
Use Cases are great for stimulating discussions about what the customer really wants the system to do and often reveal new information about how the customer really wants it to behave.
Use case diagrams are a pictorial representation of a collection of tasks the system should perform and who uses them.
A “complete” use case diagram would include all tasks, but that is usually not possible and generally unnecessary.
When identifying use cases, focus on tasks that seem important, will be used a lot, or appear to involve complex interactions.
(Slide 24) Time to speak about Notation Use case or what Use case diagrams depict.
· Actors: people or other systems interacting with system being modelled. Actors are drawn as stick figures.
· Use cases: represent sequences of actions carried out by the system.
· Communication(Association): between actors and use cases are indicated in use case diagrams by solid lines.
· System boundary boxes (optional). You can draw a rectangle around the use cases, called the system boundary box, to indicates the scope of your system.
(Slide 25) In the example depicted in Figure a CardHolder can Withdraw
Cash and Check Balance in ATM system.
(Slide 26) Let us consider the simple Use Case Description on ATM system example. The card holder selects the withdraw cash menu, which is displayed by the system. The card holder selects an amount of cash. The system debits the user’s account, returns the user’s card and issues the requested money.
(Slide 27) On this slide we can see an Elaborated Use-Case Description for the previous example from the actor and system view:
(Slide 28) Next call attention to Use case Scenarios.
Use case represents a generic case of interaction
A particular course that a use-case instance might take is called as scenario
For example, there may be many Withdraw Cash scenarios where no cash is withdrawn!
· Card holder has insufficient funds on account
· ATM cannot connect to bank’s system
· ATM does not contain enough cash
· Customer cancels the transaction for some reason
(Slide 29) for Example there are two Scenarios:
· CardHolder Mary Jones selects the cash withdrawal menu. She changes her mind, cancels the transaction and takes her card
· CardHolder Peter Smith selects the cash withdrawal menu. He selects a cash amount, but is refused because he has insufficient funds on his account. His card is returned
(Slide 30) Let us consider Types of Relationship on Use case Diagram

· Generalizes:
· Permits actors/use cases to inherit properties of more general actors/use cases
· Include:
· Permits use case to include functionality of another use case
· Extend:
· Allows for optional extensions of use case functionality
Let us consider more detail each of Relationship
(Slide 31) Generalizes Relationship example. On this picture we see that Actor “BankMember” specializes Actor “CardHolder”
(Slide 32) Include Relationship example depicted in this Figure. Use case “Select Account” is included in each of the use cases.
(Slide 33) The next figure depicts Extend Relationship example. Use case “CardHolder” has the option of printing out a balance when the “Check Balance” use case is invoked.
(Slide 34) To sum up, Use case analysis often a first step in system development:
· provide high-level view of system functionality (what rather than how) and its users
· Model generic activities
· Particular instances of use-cases are termed scenarios
UML use case diagrams
· Contain actors, use cases and associations
· supported by behaviour specifications (e.g. use-case descriptions)
(Slide 35) Thank you for the attention.

2

