
Databases Design. Introduction to SQL

LECTURE 10

Queries

Last lecture

• AS
• String Concatenation ||
• DISTINCT
• IS NULL & IS NOT NULL
• Range condition:

<,<=,>, >=
BETWEEN & NOT BETWEEN

• LIKE with % and _ characters
• CAST & ::

Aggregate Functions
SQL provides the following aggregate functions
that appear in SELECT statement:

• Min() selects the minimum value
• Max() selects the maximum value
• Avg() selects the average value
• Sum() selects the sum of occurrences
• Count() selects the number of occurrences

SQL aggregate functions return a single value,
calculated from values in a column.

Aggregate Functions

• Example: Select the minimum, maximum
and average gpa from the Students table.

SELECT min(gpa), max(gpa), avg(gpa)
FROM Students;

Aggregate Functions
• Selecting count(*) or

count(expression) returns the
number of tuples that satisfy a
selection condition.

• Example: Get number of students.
SELECT count(*)
FROM Students;

Aggregate Functions
• Example: Get number of students with

group_id = 1. The column should be
named NumOfStud.

SELECT count(*) AS NumOfStud
FROM Students
WHERE group_id=1;

Students table

Count (*) Count (group_id)

Count example

stud_id fname group_id
1 student1 2
2 student2 2
3 student3

count
3

count
2

GROUP BY
• The aggregate functions can also be applied to

subsets of tables.
• In SQL, rows can be grouped together based on the

value of some attribute(s) called grouping attribute.
• The GROUP BY clause is used to specify these

groupings.
• The effect is to combine each set of rows having

common values into one group row that represents all
rows in the group. This is done to compute
aggregates that apply to these groups.

GROUP BY: example
• Example: Select the group_id’s that

students study in and the number of
students that study in those groups.
SELECT group_id, count(*)
FROM Students
GROUP BY group_id;

• Note: The group by attribute (group_id)
should be part of the selected columns.

GROUP BY: example
Students table

SELECT count(*)
FROM Students;

stud_id fname group_id
1 student1 1
2 student2 1
3 student3 2

count
3

GROUP BY: example
Students table

SELECT group_id, count(*)
FROM Students
GROUP BY group_id;

stud_id fname group_id
1 student1 1
2 student2 1
3 student3 2

group_id count
1 2
2 1

HAVING

• The HAVING clause is used to filtering
groups

• This is similar to a selection condition
WHERE only the required rows are filtered
out

HAVING: example
• Query the group_id’s and number of students of each

group.
SELECT group_id, count(*)
FROM Students
GROUP BY group_id;

• Now, query group_id’s with more than 20 students.
SELECT group_id, count(*)
FROM Students
GROUP BY group_id
HAVING count(*) > 20;

Example with join
SELECT g.name as group_name,
count(*) as number_of_students
FROM Students s, Groups g
WHERE s.group_id=g.group_id
GROUP BY g.name
HAVING count(*) > 20;

group_name number_of_students
CSSE-131 21

CSSE-132 24

… …

ORDER BY
• The ORDER BY clause is used to set the

ordering of the resultant table.
• Columns may be sorted in ASCending or

DESCending order.

• Example: Query the first and last name of each
student in ascending order of their last names
SELECT fname, lname
FROM Students
ORDER BY lname ASC;

Ordering Results in SQL: example

• The ordering of results may be mixed in query: one
column may be sorted in ascending order while
another column may be sorted in descending order.

• For the previous query, sort the results in ascending
order of last names and descending order of first
names:

SELECT fname, lname
FROM Students
ORDER BY lname ASC, fname DESC;

Example with join
SELECT g.name as group_name, count(*)
as number_of_students
FROM Students s, Groups g
WHERE s.group_id=g.group_id
GROUP BY g.name
HAVING count(*) > 20
ORDER BY g.name ASC;

group_name number_of_students
CSSE-131 21

CSSE-132 24

… …

SELECT Statement

• SQL allows us to query data using
select statements. Syntax:

SELECT attribute(s)
FROM table(s)
WHERE selection condition(s);

16

Complete SELECT Statement

SELECT attribute(s)
FROM table(s)

[WHERE selection condition(s)]
[GROUP BY condition(s)]
[HAVING condition(s)]
[ORDER BY condition(s)]

Select Statement Summary

String Functions and Operators

Function Description Example Result
bit_length(string) Number of bits in

string
bit_length('jose') 32

length(string) or
char_length(string)

Number of
characters in string

length('jose') 4

lower(string) Convert string to
lower case

lower('TOM') tom

upper(string) Convert string to
upper case

upper('tom') TOM

substring(string [from
int] [for int])

Extract substring substring('Thom
as' from 2 for 3)

hom

String Functions and Operators
Function Description Example Result

left(str text, n int
)

Return first n characters
in the string. When n is
negative, return all but
last |n| characters.

left('abcde', 2) ab

right(str text, n i
nt)

Return last n characters
in the string. When n is
negative, return all but
first |n| characters.

right('abcde',
2)

de

replace(string te
xt, fromtext, to t
ext)

Replace all occurrences
in string of
substring from with
substring to

replace('abcde
fabcdef', 'cd',
'XX')

abXXefa
bXXef

reverse(str) Return reversed string reverse('abcde
')

edcba

Date Functions

EXTRACT (field FROM source)

EXTRACT function retrieves subfiels
such as year or hour from date/time values.

Source must be a value expression of
date type.

Field is an identifier or string that selects
what field to extract from the source value.

Date Functions

date_part (‘field’, source)

Source must be a value expression
of date type.

Field is an identifier or string that
selects what field to extract from the
source value.

Date Functions
Fields:
• century
• year
• month
• week
• day
• decade
• quarter
• dow (the day of the week) / isodow
• doy (day of the the year)
• hour
• minute
• second
• etc.

EXTRACT / date_part examples

SELECT EXTRACT(year FROM bdate)
FROM Students;

SELECT date_part('year', bdate)
FROM Students;

Date Functions

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

Example:
SELECT CURRENT_DATE;

Books
• Connolly, Thomas M. Database Systems: A Practical

Approach to Design, Implementation, and Management /
Thomas M. Connolly, Carolyn E. Begg.- United States of
America: Pearson Education

• Garcia-Molina, H. Database system: The Complete Book /
Hector Garcia-Molina.- United States of America: Pearson
Prentice Hall

• Sharma, N. Database Fundamentals: A book for the
community by the community / Neeraj Sharma, Liviu Perniu.-
Canada

• www.postgresql.org/docs/manuals/
• www.postgresql.org/docs/books/

http://www.postgresql.org/docs/manuals/
http://www.postgresql.org/docs/books/

