
Курс:

ТЕОРИЯ ОПТИМИЗАЦИИ

Тема 15: 

АНАЛИЗ РЕШЕНИЯ С ПОМОЩЬЮ 
ТЕОРИИ ДВОЙСТВЕННОСТИ. 

ТЛЕУЖАНОВА МАНАТЖАН АШИМКУЛОВНА



– доход от единицы j-ой продукции

Введем оценку полезности единицы i-го ресурса 

Построение двойственной задачи и ее экономическая интерпретация
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Рассмотрим задачу объемного планирования. Пусть исходная задача такова:

Требуется определить объемы производства  n видов продукции 

, обеспечивающие наибольший суммарный доход, при условии, что расход ресурсов не превосходит их запасов.

– запасы ресурсов каждого вида

– нормы расхода  i-го ресурса на единицу j-ой продукции

Добавим в систему одну тонну ресурса. На сколько при этом увеличится максимальный доход? 
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Сравним затраты ресурсов на единицу j-ой продукции с доходом, полученным от единицы j-ой продукции:

Исходя из закона сохранения материальных потоков, необходимо потребовать, чтобы суммарная оценка затрат была не 

меньше дохода, иначе доход буден получен из ничего. Будем искать такое решение, при котором суммарная оценка запасов 

ресурса минимальна:

Тогда задача (4)-(6) является двойственной к исходной задаче.



Математическая формулировка двойственной задачи к произвольной 

задаче линейного программирования
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Пусть исходная задача имеет вид:

Тогда двойственной к задаче (7-10) называется задача вида:



Правила построения двойственной задачи

Для применения правил, необходимо в задаче на максимум записать все ограничения – неравенства со 

знаком . В задаче же на минимум – со знаком

• Количество переменных одной задачи совпадает с количеством ограничений другой задачи. Т.е. 

каждому ограничению одной задачи соответствует переменная другой. Ограничению-неравенству 

соответствует неотрицательная переменная, а ограничению-равенству – переменная произвольного знака.

• Правые части ограничений одной задачи являются коэффициентами критерия другой.

• Матрицы условий этих задач взаимно транспонированы, т.е. столбец матрицы условий одной задачи 

становится строкой другой.

• Критерий одной задачи максимизируется, а другой минимизируется. Причем в задаче на максимум все 

ограничения – неравенства типа , а в задаче на минимум – типа
.
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Пусть исходная задача имеет вид:

Построить двойственную задачу.

Покажем, что эти задачи взаимно двойственные. Для этого построим двойственную задачу к двойственной:

Действительно, полученная задача совпадает с исходной.


