

Проектирование обогатительных фабрик

Лекция 14 Проектирование вспомогательных цехов и отделений обогатительных фабрик

Преподаватель: Мотовилов Игорь Юрьевич доктор PhD кафедры «Металлургия и обогащение полезных ископаемых»

motovilov88@inbox.ru

COGEDMANTE

- 1. Проектирование хвостового хозяйства
- 2. Классификация хвостохранилищ
- 3. Сооружения системы охраны окружающей среды
- 4. Проектирование реагентного хозяйства
- 5. Проектирование системы хранения и отгрузки концентратов
- 6. Проектирование систем опробования, технологического контроля и АСУТП
- 7. Организация ремонтных работ основного технологического оборудования
- 8. Проектирование систем электро-, водо- и теплоснабжения

Проектирование хвостового хозяйства

Проект хвостового хозяйства является частью проекта обогатительной фабрики или может быть самостоятельным проектом. Проектирование хвостового хозяйства выполняется гидротехническим отделом на основании задания, которое включает:

- 1. Количество отходов (хвостов), т/г, $м^3$ /г, $м^3$ /сут, $м^3$ /ч.
- 2. Продолжительность работы фабрики в году, ч.
- 3. Расчетное число лет эксплуатации фабрики.
- 4. Плотность материала хвостов, т/м3.
- 5. Объемную массу материала хвостов, т/м3.
- 6. Гранулометрический состав хвостов.
- 7. Содержание твердого в хвостовой пульпе, %.
- 8. Минеральный состав хвостов.
- 9. Температуру хвостовой пульпы, град.
- 10. Среднесуточную температуру воздуха в холодное время года, град.
- 11. Химический состав жидкой фазы пульпы.
- 12. Теплофизические характеристики мерзлых и талых хвостов.
- 13. Необходимость оборотного водоснабжения.
- 14. Мощность слоя промерзания.
- 15. Требования к сточной воде.
- 16. Генеральный план промплощадки фабрики
- 17. Срок складирования хвостов.
- 18. Систему нейтрализации токсичных компонентов.

Проектирование хвостового хозяйства

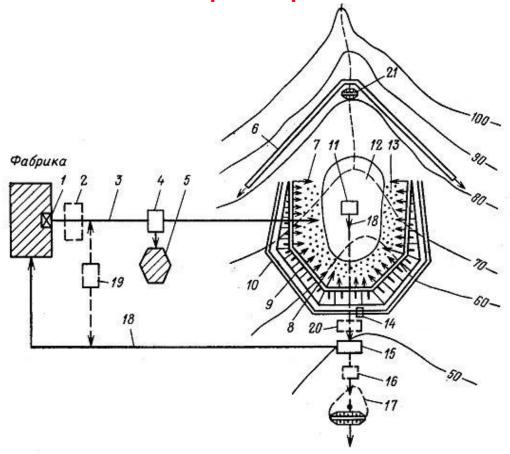


Рис. 14.1. Общая схема хвостового хозяйства:

1 – хвостовой зумпф главного корпуса; 2 – сгущение хвостовой пульпы; 3 – магистральные пульповоды; 4 – пульпонасосная станция; 5 – аварийный бассейн; 6 – канавы для отвода поверхностных вод; 7 – сосредоточенные сбросы; 8 – распределительный пульповод; 9 – дамба; 10 – дренажная канава; 11 – водоприемный колодец; 12 – отстойный пруд; 13 – пляж; 14 – дренажная насосная станция; 15 – насосная станция оборотной воды; 16 – очистные сооружения; 17 – вторичный отстойник; 18 – водоводы оборотной воды; 19 – сооружения водоподготовки; 20 – вторичный отстойник; 21 – верхняя плотина

Необходимый объем хвостохранилища должен быть достаточным для складирования хвостов в течение всего срока эксплуатации обогатительной фабрики. Объем, или вместимость, хвостохранилища (м³) определяется по формуле

$$V = \frac{QT}{K\gamma_{CK}}$$

где Q – годовое количество хвостов, T/rog;

Т – продолжительность эксплуатации фабрики, лет;

К – коэффициент заполнения хвостохранилища, равный 0,8 для небольших хвостохранилищ, 0,9 – для средних и больших хвостохранилищ;

 $\gamma_{c\kappa}$ — средняя объемная масса сухих хвостов, т/м³.

Площадь хвостохранилища, м², определяется по формуле

$$S = \frac{V}{TI}$$

где – интенсивность намыва, м/год.

Проектирование хвостового хозяйства

Рис. 14.2. Магистральный пульповод

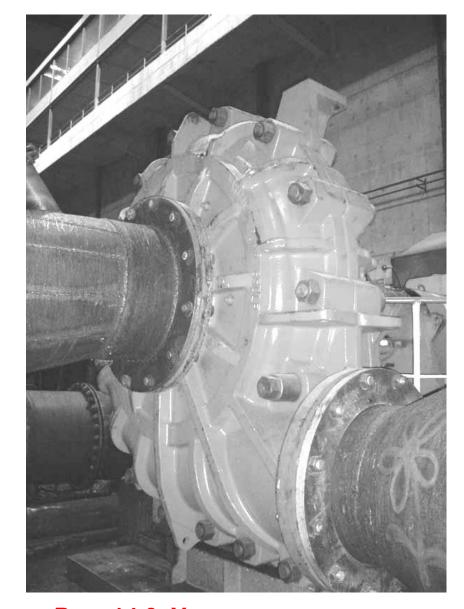


Рис. 14.3. Установка грунтовых насосов в пульпонасосной станции

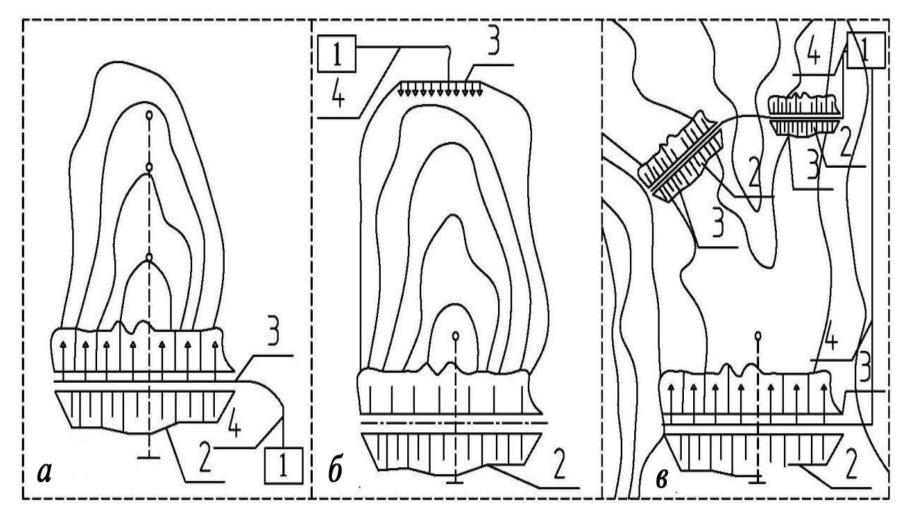


Рис. 14.5. Схемы заполнения хвостохранилищ:

а – от дамбы; б – к дамбе; в–комбинированная: 1 – обогатительная фабрика; 2 – дамба; 3 – распределительный пульповод; 4 – магистральный пульповод

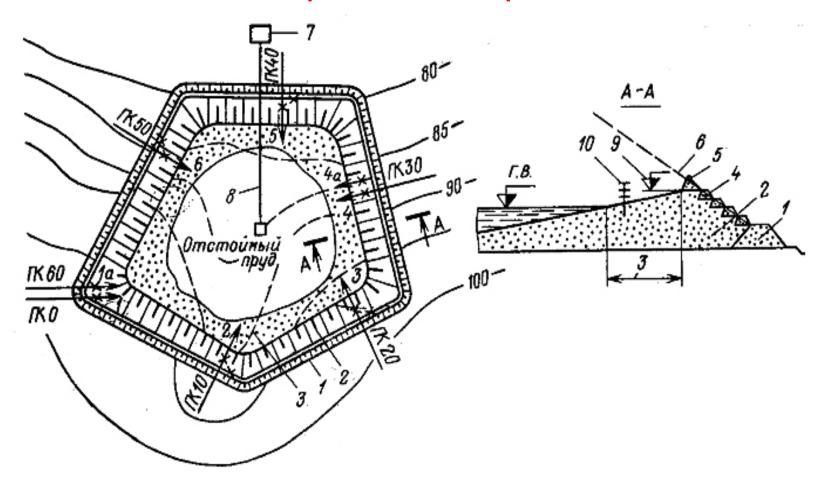


Рис. 14.6. План и разрез хвостохранилища при кольцевой схеме заполнения

1 – насыпная дамба; 2 – намывная дамба; 3 – пляж; 4 – вторичная дамба обвалования; 5 – распределительный пульповод; 6 – намывной откос; 7 – насосная оборотной воды; 8 – водосбросный коллектор; 9 – отметка верхнего пляжа; 10 – вешка

Рис. 14.7. Наращивание дамбы вторичного обвалования

Рис. 14.8. Дренажная водоотводная канава

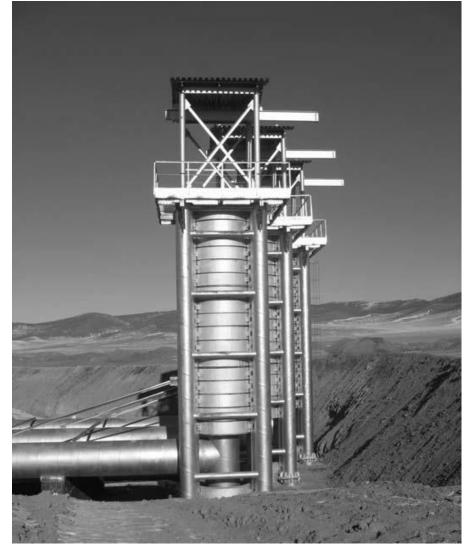


Рис. 14.9. Водоприемные колодцы с сифонными водозаборами

Сооружения системы охраны окружающей среды

Сооружения системы охраны окружающей среды предназначены для защиты водного бассейна и территории, прилегающей к хвостохранилищу и трассе гидротранспорта хвостов. К сооружениям охраны окружающей среды относятся:

дренажные канавы;

аварийные бассейны;

фильтрационный канал;

рекультивированный низовой откос намывной дамбы.

Проектирование реагентного хозяйства

Таблица 14.1 Основные параметры процесса приготовления некоторых реагентов

Реагенты	Активность	Концентрация	Продолжительность, ч	
	реагента, %	раствора, %	растворе-	отстаи-
			ния	вания
Ксантогенаты	78,588	210	26	416
Дитиофосфат	60	310	46	1
Сульфид натрия	6365	215	24	0,1 2
Цианид	8389	210	46	2464
Цинковый купорос	9597	1015	24	456
Медный купорос	9498	215	1	1
Железный купорос	52,5	210	2	46
Циклогексанол	_	0,5-3,6	2	0
Сода кальцинирован-				
ная	50	510	2	23
Жидкое стекло			34	
	7073	510	(варка)	0
Полиакриламид	_	0,050,5	4	0
Карбоксиметилцел-				
люлоза	40	15	510	0

Проектирование системы хранения и отгрузки концентратов

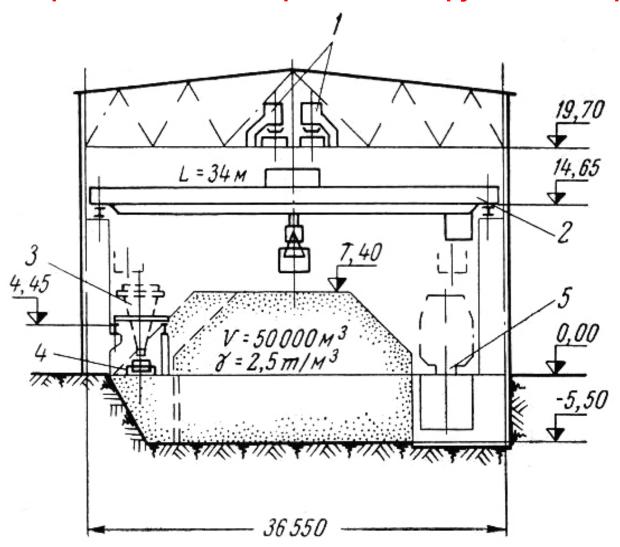


Рис. 14.10. Закрытые склады для концентратов с мостовым грейферным складом:

1 – загрузочные конвейеры; 2 – грейферный кран; 3 – воронка; 4 – разгрузочный конвейер; 5 – железнодорожный путь

Проектирование системы хранения и отгрузки концентратов

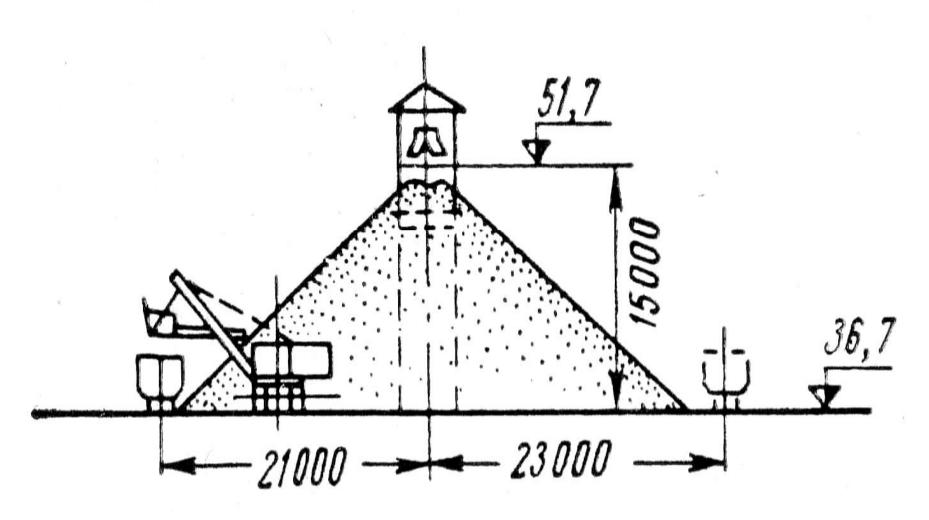


Рис. 14.11. Открытый эстакадный склад с разгрузкой экскаватором

Проектирование систем опробования

Опробование – это комплекс операций по отбору и обработке проб для определения физических свойств, химического состава или содержания одного или нескольких компонентов в исследуемых веществах. Опробование – одна из наиболее распространенных и важнейших операций при добыче и переработке полезных ископаемых.

На обогатительных фабриках опробуют исходное сырье и продукты обогащения для контроля за технологическим процессом и качественными показателями работы отдельных машин и аппаратов.

Опробование и контроль за качественными показателями работы фабрики и за правильностью количественного учета рудного сырья продуктов обогащения осуществляется на фабрике отделом технического контроля (ОТК) по специально утвержденным на фабрике инструкциям, согласно типовому положению об ОТК.

Схема опробования и контроля руды, продуктов обогащения и вспомогательных материалов устанавливается и обосновывается в проекте фабрики в зависимости от характера руды, способа ее переработки, производительности фабрики, системы автоматизации и аналитической службы.

Проектирование систем опробования

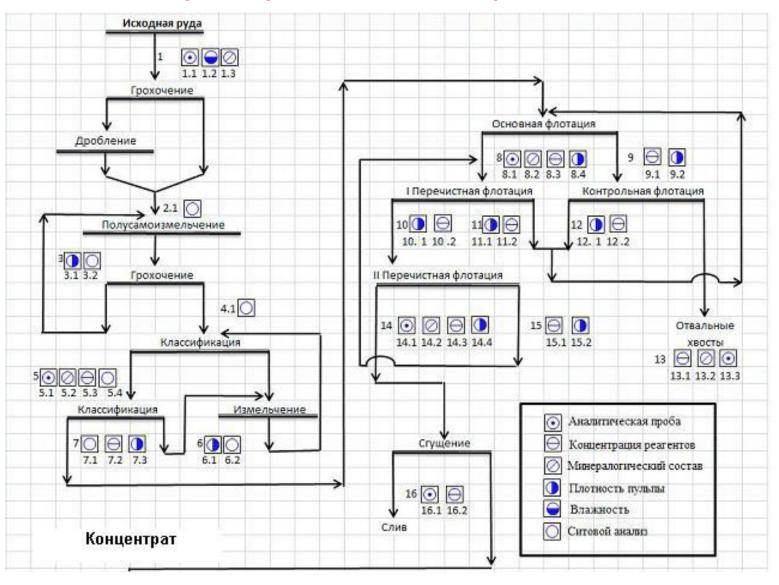


Рис. 14.12. Схема опробования технологического процесса на золотоизвлекательной фабрике

Автоматизированные системы управления технологическим процессом

АСУТП обогатительных фабрик представляет собой информационнообеспечивающую управление в управляющую систему, масштабе времени автоматизированными (автоматическими) технологическими комплексами по заданным технологическим и техникокритериям, экономическим определяющим качественные количественные результаты получение продукта, включающую вычислительные устройства, средства контроля и математическое (программное) обеспечение и оперативно-диспетчерский персонал.

Для контроля за работой оборудования и технологическим режимом устанавливается большое количество автоматических датчиков.

Решение задачи автоматического оперативного управления все более усложняется и становится невозможным без применения новых средств автоматизации и вычислительной техники. Управление технологическими процессами осуществляется автоматизированными системами управления (АСУТП). В основу их организационной структуры заложен иерархический принцип разделения функций между следующими уровнями: диспетчер-оператор технологических переделов – технологический персонал на рабочих местах.

Организация ремонтных работ основного технологического оборудования

Положение о планово-предупредительных ремонтах (ППР) и техническом обслуживании (ТО) оборудования разрабатывается с учетом специфических условий работы основного и вспомогательного оборудования. Основными исходными данными для составления Положения и ремонтных нормативов служат:

- опыт эксплуатации и ремонта оборудования на обогатительной фабрике (ОФ);
 - Положение о ППР на предприятиях черной и цветной металлургии;
- ремонтные нормы и нормативы, разработанные на основе опытных наработок на ОФ;
- системы технического обслуживания и ремонта энергетического оборудования.

Проектирование систем электро-, водо- и теплоснабжения

Основными потребителями электроэнергии на обогатительной фабрике и в хвостовом хозяйстве являются электродвигатели дробилок, мельниц, пульпонасосов, насосов водоснабжения, флотомашин, конвейеров, вентиляционных установок, а также электрическое освещение. При этом для механизмов с электродвигателями мощностью 250 кВт и выше приняты электродвигатели переменного тока (синхронные и асинхронные) при напряжении 6000 В. К таким механизмам относятся дробилки, мельницы шаровые и самоизмельчения, крупные насосы, тяжелые конвейеры.

Производственное водоснабжение. Водопровод обогатительной фабрики предусмотрен проектами для подачи воды на нужды технологического процесса обогащения руды, охлаждения, гидроуплотнения и промывки оборудования, для хозяйственно-питьевых потребностей трудящихся и для обеспечения пожаротушения зданий и сооружений.

Для обогатительной фабрики принимаются следующие системы наружного водопровода:

- производственный водопровод оборотной воды из хвостохранилища фабрики;
- производственный водопровод свежей воды;
- хозяйственно-противопожарный водопровод.

Теплоснабжение. Источником теплоснабжения фабрики является центральная тепловая станция. Теплоносителем для отопления и вентиляции служит перегретая вода с температурой 70...150 °C. Для технологических нужд применяется острый пар с параметрами P = 12 атм, T = 240 °C. Острый пар подводится в корпус приготовления реагентов для растворения, например Na_2S .

На обогатительных фабриках работают в основном пневмомеханические (субаэрационные) машины, воздух для аэрации пульпы в которые подается принудительно под давлением от центробежных нагнетателей.

Для транспортировки проб, очистки фильтров, транспортировки извести в реагентном отделении, ремонтных нужд и управления технологическими процессами флотации используется сжатый воздух, для получения которого используются ступенчатые центробежные компрессоры 32ВЦ-100/9 ЭВУ, одноступенчатые винтовые компрессоры ТS - 32S-400.