Расчет схемы дробления и выбор оборудования для дробления и грохочения ч.2

Крупность дробленых продуктов по стадиям

Крупность дробленых продуктов по стадиям составит: в первой стадии — $d_I = D_{max} / S_I = 800 / 2.67 = 300$ мм; во второй стадии — $d_{II} = d_I / S_{II} = 300 / 4.05 = 74.1$ мм, принимается 75 мм; в третьей стадии — $d_{III} = d_{II} / S_{III} = 75 / 6.17 = 12$ мм.

Расчет величины разгрузочного отверстия для второй и третьей стадий дробления

По таблице A.9 приложения A для $d_I=300$ мм выбираем дробилку КСД–2200–Гр. По таблице A.2 приложения A для $d_{II}=75$ мм определяем значение Z_{II} для твердой руды:

$$Z_{II} = 2.4 - (2.4 - 2.3) * (75 - 71) / (94 - 71) = 2.38$$
.

Разгрузочное отверстие дробилки КСД-2200-Гр составит:

$$i_p = d_{II} / Z_{II} = 75 / 2.38 = 32 \text{ MM}.$$

Для второй стадии принимаются показатели грохочения: $a_{\rm II}=d_{\rm II}=75$ мм, $E_{\rm II}=80$ %.

По $d_{II}=75$ мм и таблице A.10 приложения A в третьей стадии для замкнутого цикла для сравнения принимаются дробилки КМД-1750– Γ р и КМД-2200– Γ р. Сравнение проводится для вариантов, приведенных в таблице A.11 приложения A:

```
для эталонного режима -i_{III}=d_{_H}=12 мм, a_{III}=d_{_H}=12 мм, E_{III}=85 %; для эквивалентного №1 -i_{III}=0.8*d_{_H}=10 мм, a_{III}=1.15*d_{_H}=14 мм, E_{III}=85 %; для эквивалентного №2 -i_{III}=0.8*d_{_H}=10 мм, a_{III}=1.3*d_{_H}=16 мм, E_{III}=85 %.
```

Размеры отверстий грохотов корректируются в соответствии с таблицей A.14 приложения A.

Параметры выбранных дробилок и расчетные данные для второй и третьей стадии заносятся в таблицу 1.

Таблица 1 – Параметры дробления второй и третьей стадий

таблица т тараметры дробления второг						Щи		
Стадии	Типоразмеры	Режим дробления	S	d _H ,	Z	i _p ,	a,	E,
дробления	дробилок			MM		MM	MM	%
II	КСД-2200-Гр	_	4.00	75	2.38	32	75	80
III	КМД-1750-Гр	эталонный	6.25	12		12	12	85
		эквивалентный №1	6.25	12		10	14	85
		эквивалентный №2	6.25	12		10	16	65
	КМД-2200-Гр	эталонный	6.25	12		12	12	85
		эквивалентный №1	6.25	12		10	14	85
		эквивалентный №2	6.25	12		10	16	65

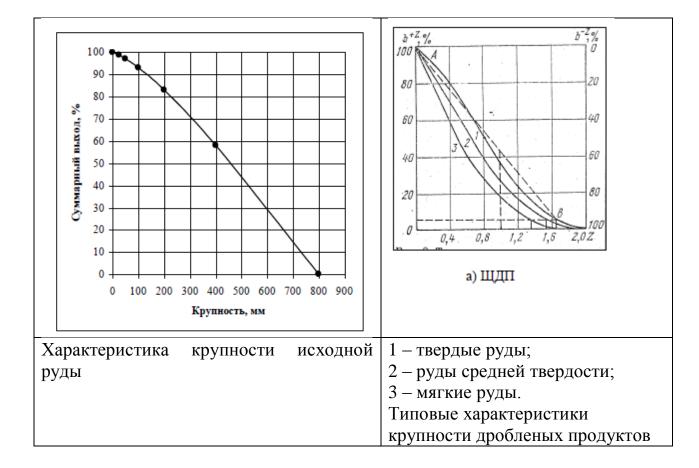

Расчет характеристик крупности для продуктов дробления по стадиям

Таблица 2 — Таблица типовой характеристики крупности продукта 3 (dH = 300 мм, ip = 176 мм)

Определяемый класс,	Крупность класса,	Выход класса	Выход класса
в долях ір	MM	по «+», %	по ≪−», %
$0.2 * i_p$	35	90	10
$0.4 * i_{p}$	70	80	20
$0.8 * i_{p}$	140	50	50
$1.2 * i_p$	210	25	75
$Z_{\rm I}*i_{\rm p}$	300	5	95

Таблица 3 – Расчетной характеристики крупности продукта 4

Крупность	Расчетный выход класса по «-», %	Выход
класса, мм		класса по
		«+», %
35	$\beta_4^{-35} = \beta_0^{-35} + b_0^{+176} * \beta_3^{-35} = 1.5 + 0.86*10 = 10$	90
70	$\beta_4^{-70} = \beta_0^{-70} + b_0^{+176} * \beta_3^{-70} = 4 + 0.86*20 = 21$	79
140	$\beta_4^{-140} = \beta_0^{-140} + b_0^{+176} * \beta_3^{-140} = 11 + 0.86*50 = 54$	46
210	$\beta_4^{-210} = \beta_0^{-210} + b_0^{+210} * \beta_3^{-210} = 18 + 0.82*75 = 80$	20
300	$\beta_4^{-300} = \beta_0^{-300} + b_0^{+300} * \beta_3^{-300} = 29 + 0.71*95 = 96$	4

По данным таблицы 3 строится характеристика крупности продукта

4, представленная на рисунке 1.

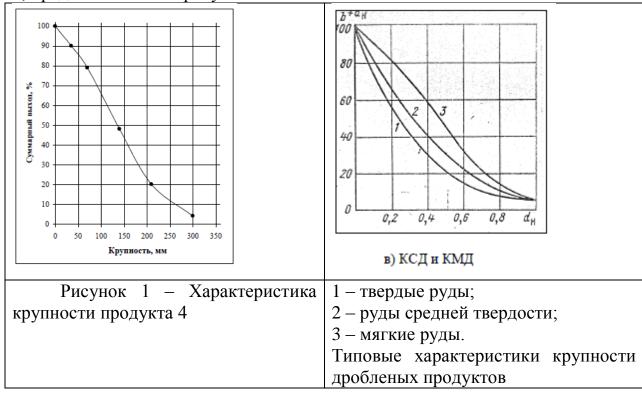


Таблица 4 – Таблица типовой характеристики крупности продукта 7

тионици тионици пиновон кириктернетики круппости продукти т						
Определяемый класс,	Крупность	Выход класса	Выход класса			
в долях $d_{\scriptscriptstyle H}$	класса, мм	по «+», %	по ≪-», %			
$0.2 * d_{\scriptscriptstyle H}$	15	82	18			
$0.4*d_{\scriptscriptstyle \mathrm{H}}$	30	58	42			
$0.6 * d_{H}$	45	32	68			
$0.8 * d_{H}$	60	15	85			
$1.0 * d_{H}$	75	5	95			

Таблица 5 – Расчетной характеристики крупности продукта 8

Крупность	Расчетный выход класса по «-», %	Выход
класса, мм		класса по
		«+», %
15	$\beta_8^{-15} = \beta_4^{-15} + b_4^{+32} * \beta_7^{-15} = 4 + 0.91*18 = 20$	80
30	$\beta_8^{-30} = \beta_4^{-30} + b_4^{+32} * \beta_7^{-30} = 8 + 0.91*42 = 46$	54
45	$\beta_8^{-45} = \beta_4^{-45} + b_4^{+45} * \beta_7^{-45} = 12 + 0.88*68 = 72$	28
60	$\beta_8^{-60} = \beta_4^{-60} + b_4^{+60} * \beta_7^{-60} = 17 + 0.83*85 = 88$	12
75	$\beta_8^{-75} = \beta_4^{-75} + b_4^{+75} * \beta_7^{-75} = 23 + 0.77*95 = 96$	4

По данным таблицы 5 строится характеристика крупности продукта 8, представленная на рисунке 2.

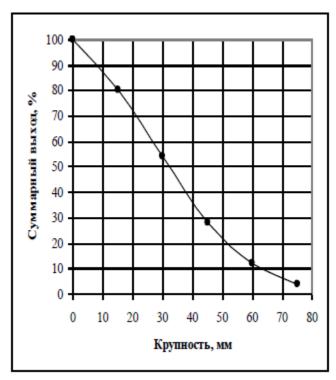
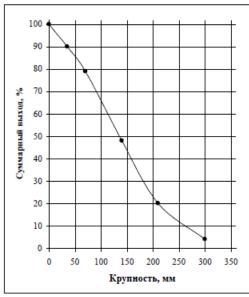



Рисунок 2 – Характеристика крупности продукта 8

Расчет нагрузок на дробилки II стадии дробления

Рассчитаем выход продуктов и загрузку дробилок II стадии дробления. Отсеваемый класс -75 мм. Содержание отсеваемого класса в продукте 4 $\beta_4^{-75} = 23$ %.

Масса отсеваемого класса определяется в соответствии с формулой (5):

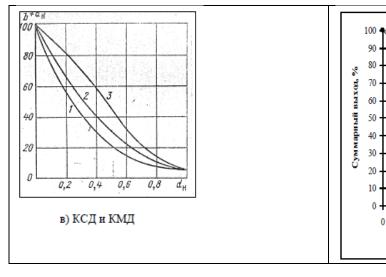
$$Q_5 = Q_4 * \beta_4^{-75} * E_{II} = 609 * 0.23 * 0.8 = 112 \text{ T/y}.$$

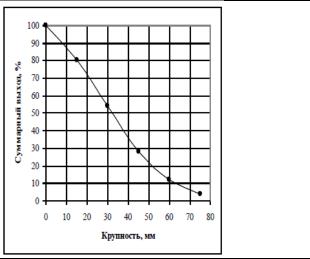
Загрузка дробилки составит:

$$Q_6 = Q_4 - Q_5 = 609 - 112 = 497 \text{ T/H}.$$

Расчет нагрузок на дробилки III стадии дробления

Рассчитаем выход продуктов и загрузку дробилок III стадии дробления. Масса продукта 8С определяется по формуле (13):


$$Q_{10} = Q_{8C} - Q_{12} = Q_{8C} - Q_0$$
, T/4.


Для дробления продукта крупностью -75 мм можно установить дробилки типа КМД-1750–Гр и КМД-2200–Гр.

Расчет нагрузок на дробилку КМД-1750-Гр

1) эталонный режим работы дробилки КМД–1750–Гр ($a_{\rm III}=12$ мм, $i_{\rm III}=12$ мм, $E_{\rm III}=85$ %).

Для дробилки КМД–1750–Гр по таблице А.2 приложения А для $i_p=12$ мм номинальная крупность продукта в разгрузке дробилки составит $d_{\rm H}=24++(30-24)*(12-10)/(15-10)=26$ мм. Отношение $a_{\rm III}/d_{\rm H}=12/26=0.46$. По рисунку выход класса с таким соотношением составит 47 %, т.е. $\beta_{11}^{-12}=47$ %; по характеристике крупности продукта $8-\beta_8^{+12}=84$ %.

Тогда по формуле (13):

$$Q_{8C} = 609 * (----- + -----) = 1805 \text{ т/ч}.$$
 $0.85 47$

Загрузка дробилки составит $Q_{10} = 1805 - 609 = 1196$ т/ч;

2) эквивалентный режим № 1 работы дробилки КМД–1750–Гр ($a_{III}=14$ мм, $i_{III}=10$ мм, $E_{III}=85$ %). Для дробилки КМД–1750–Гр по таблице А.2 приложения А для $i_p=10$ мм номинальная крупность продукта в разгрузке дробилки составит $d_{II}=24$ мм. Отношение $a_{III}/d_{II}=14/24=0.58$. По рисунку 6 «В» выход класса с

таким соотношением составит 65 %, т.е. $\beta_{11}^{-14} = 65$ %; по характеристике крупности продукта $8 - \beta_8^{+14} = 81$ %. Тогда по формуле (13):

$$Q_{8C} = 609 * (-----+ + -----) = 1475 \text{ т/ч}.$$
 $0.85 \qquad 65$

Загрузка дробилки составит $Q_{10} = 1475 - 609 = 866$ т/ч;

3) эквивалентный режим № 2 работы дробилки КМД–1750–Гр ($a_{III}==16$ мм, $i_{III}=10$ мм, $E_{III}=65$ %).

Для дробилки КМД–1750–Гр по таблице А.2 приложения А для $i_p=10$ мм номинальная крупность продукта в разгрузке дробилки составит $d_{\rm H}=24$ мм. Отношение $a_{\rm III}/d_{\rm H}=16/24=0.67$. По рисунку 6 «В» выход класса с таким соотношением составит 75 %, т.е. $\beta_{11}^{-16}=75$ %; по характеристике крупности продукта $8-\beta_8^{+16}=77$ %. Тогда по формуле (13):

$$Q_{8C} = 609 * (-----+ -----) = 1562 \text{ т/ч}.$$
 $0.65 75$

Загрузка дробилки составит $Q_{10} = 1562 - 609 = 953$ т/ч.

Расчет нагрузок на дробилку КМД-2200-Гр

1) эталонный режим работы дробилки КМД–2200–Гр ($a_{\rm III}$ = 12 мм, $i_{\rm III}$ = 12 мм, $E_{\rm III}$ = 85 %).

Для дробилки КМД–2200–Гр по таблице А.2 приложения А для $i_p = 12$ мм номинальная крупность продукта в разгрузке дробилки составит $d_H = 34 + (43 - 34)*(12 - 10)/(15 - 10) = 38$ мм. Отношение $a_{III}/d_H = 12/38 = 0.32$. По рисунку «В» выход класса с таким соотношением составит 30 %, т.е. $\beta_{11}^{-12} = 30$ %; по характеристике крупности продукта $8 - \beta_8^{+12} = 84$ %. Тогда по формуле (13):

$$Q_{8C} = 609 * (-----+ + -----) = 2422 \text{ т/ч}.$$
 $0.85 \qquad 30$

Загрузка дробилки составит $Q_{10} = 2422 - 609 = 1813$ т/ч;

2) эквивалентный режим № 1 работы дробилки КМД–2200–Гр ($a_{III}==14$ мм, $i_{III}=10$ мм, $E_{III}=85$ %).

Для дробилки КМД–2200–Гр по таблице А.2 приложения А для $i_p = 10$ мм номинальная крупность продукта в разгрузке дробилки составит $d_H = 34$ мм. Отношение $a_{III}/d_H = 14/34 = 0.42$. По рисунку 6 «В» выход класса с таким соотношением составит 42 %, т.е. $\beta_{11}^{-14} = 42$ %; по характеристике крупности продукта $8 - \beta_8^{+14} = 81$ %. Тогда по формуле (13):

$$Q_{8C} = 609 * (-----+ + -----) = 1891 \text{ т/ч}.$$
 $0.85 \qquad 42$

Загрузка дробилки составит $Q_{10} = 1891 - 609 = 1282$ т/ч;

в) эквивалентный режим № 2 работы дробилки КМД–1750–Гр ($a_{III}=16$ мм, $i_{III}=10$ мм, $E_{III}=65$ %).

Для дробилки КМД–2200–Гр по таблице А.2 приложения А для $i_p = 10$ мм номинальная крупность продукта в разгрузке дробилки составит $d_H = 34$ мм. Отношение $a_{III}/d_H = 16/34 = 0.47$. По рисунку 6 «В» выход класса с таким соотношением составит 55 %, т.е. $\beta_{11}^{-16} = 55$ %; по характеристике крупности продукта $8 - \beta_8^{+16} = 77$ %. Тогда по формуле (13):

$$Q_{8C} = 609 * (-----+ + -----) = 1790 \text{ т/ч}.$$
 $0.65 \qquad 55$

Загрузка дробилки составит $Q_{10} = 1790 - 609 = 1181$ т/ч.

Расчетные данные сводятся в таблицу 6.

Таблица 6 – Расчетные данные для выбора дробилок

	Стадия дробле	ния, типоразмер	D _{max} B	i _p ,	Загрузка
	дробилки и режим дробления		питании,	MM	дробилки, т/ч
			MM		
II	КСД-2200-Гр		300	32	497
III	КМД-1750-Гр	эталонный	75	12	1196
	КМД-1750-Гр	эквивалентный №1	75	10	866
	КМД-1750-Гр	эквивалентный №2	75	10	953
III	КМД-2200-Гр	эталонный	75	12	1813
	КМД-2200-Гр	эквивалентный №1	75	10	1282
	КМД-2200-Гр	эквивалентный №2	75	10	1181

Техническая характеристика дробилок приведена в таблице 7.

Таблица 7 – Техническая характеристика дробилок для сравнения

		1 1	· · · 1	
Стадия	Типоразмер	Допускаемый D_{max}	$i_{\min} - i_{\max}$,	$q_{\min} - q_{\max}$
дробления	дробилки	в питании, мм	MM	м ³ /ч
II	КСД-2200-Гр	300	30 - 60	360 – 610
III	КМД-1750-Гр	100	9 - 20	95 - 130
	КМД-2200-Гр	110	10 - 20	220 - 260